Chemical and Biomolecular Engineering

Top 20 Doctoral Program — National Research Council

Faculty

Jacinta C. Conrad
Dr. Jacinta C. Conrad

Assistant Professor of Chemical and Biomolecular Engineering

Office Location: S226, Engineering Building 1
Phone: 713-743-3829   |   Fax: 713-743-4323
Email: jcconrad [at] uh [dot] edu
Four near-surface motility mechanisms of the bacterium Pseudomonas aeruginosa.

Education: 

S.B. Mathematics, University of Chicago (1999)
M.A. Physics, Harvard University (2002)
Ph.D. Physics, Harvard University (2005)
Postdoctoral Research Associate, University of Illinois (2005–2009)

Courses: 

<strong>Fall 2016</strong>: CHEE 6333, Transport Processes.

<strong>Spring 2016</strong>: CHEE 3321, Analytical Methods.

<strong>Fall 2015</strong>: CHEE 6333, Transport Processes.

Spring 2015: CHEE 3321, Analytical Methods.

Fall 2014: CHEE 6333, Transport Processes.

Spring 2014: CHEE 3363, Fluid Mechanics for Chemical Engineers.

Fall 2013: CHEE 6333, Transport Processes.

Spring 2013: CHEE 3363, Fluid Mechanics for Chemical Engineers.

Fall 2012: CHEE 6333, Transport Processes.

Fall 2012: CHEE 6327, Experimental Methods in Chemical Engineering (lecturer).

Spring 2012: CHEE 3363, Fluid Mechanics for Chemical Engineers.

Fall 2011: CHEE 6333, Transport Processes.

Fall 2011: CHEE 6327, Experimental Methods in Chemical Engineering (lecturer).

Spring 2011: CHEE 3363, Fluid Mechanics for Chemical Engineers.

Fall 2010: CHEE 6327, Experimental Methods in Chemical Engineering (lecturer).

Spring 2010: CHEE 3363, Fluid Mechanics for Chemical Engineers.

Research Interests: 

We are broadly interested in the interaction between complex fluids (polymers, colloids, nanoparticles, bacteria, protozoa, cells) and the surfaces that confine or support them. These interactions appear ubiquitously in applications in petroleum engineering (drilling media, microbial corrosion), environmental engineering (biofouling, bioremediation), materials engineering (rapid prototyping, direct-write assembly), and biodefense (diagnostics, biodetection).  Moreover, this broad class of problems is scientifically fascinating: both the chemical and mechanical properties of surfaces can influence the adhesion, diffusion, motility, and phase behavior of complex fluids. Our current research thrusts include:

Flow and Transport of Complex Fluids in Confinement

Processes involving the flow of complex fluids in confined geometries appear prominently in technological, environmental, and physiological settings. Confinement effects strongly influence multiphase transport properties, and are thus relevant for technological applications involving porous media, such as gel electrophoresis and chromatography, and critical resource applications, such as water remediation and oil extraction from nonconventional sources. Despite their ubiquity, the science underlying these processes remains poorly understood. We use confocal and light microscopy to directly image the flow of complex fluids in microchannels. By quantifying the flow behavior in a variety of controlled microscale geometries using high-throughput tracking algorithms, we will identify the effects of confinement on the flow properties of complex fluids and inspire new designs for manipulating these materials on the microscale. Currently, we are investigating the effects of confinement on the structure, dynamics, and phase behavior of quiescent and flowing model colloid-polymer mixtures (in part with Jeremy Palmer), and the transport properties of nanoparticles in microfabricated post arrays and polymer solutions (with Ramanan Krishnamoorti).

Near-Surface Motility of Microorganisms

Over 99% of bacteria live in bacterial biofilms, which are surface-associated communities surrounded by a protective extracellular matrix that increases the resistance of bacteria to environmental and host stresses. These stress-resistant biofilms thus cause significant problems both in human health and in industrial processes. Preventing their formation requires understanding how bacteria adapt their motility mechanisms near surfaces. We directly image the motion of bacteria and other microorganisms near engineered surfaces with confocal and light microscopy. By translating microscopy images into a searchable database of trajectories, we will elucidate the effects of surface properties on microbial motility and inspire new strategies to create antifouling materials.  Currently, we are quantifying the near-surface motility mechanisms of model bacteria on engineered surfaces, and applying insights gained from these studies to understand how bacteria respond to self-cleaning surfaces (with Megan Robertson) and identifying appendage-driven attachment mechanisms (in part with Patrick Cirino).

Biomedical Applications: Lateral Flow Assays and Protein Crystallization

We apply the fundamental scientific principles identified in other studies to address critical needs in public health. With Richard Willson, we are applying our insights into nanoparticle transport in porous media to design sensitive, specific, inexpensive, and portable diagnostics based on lateral flow immunoassays (the format used in the common pregnancy test). Our assays employ engineered viral nanoparticles, M13 bacteriophage, as reporters and exhibit sensitivities that are up to one-hundred times greater than conventional gold-nanoparticle-based assays.  With Peter Vekilov, we apply our high-throughput imaging methods to study dense liquid protein clusters, which are precursors in which protein crystals subsequently nucleate. Understanding the mechanisms that lead to crystallization in biological settings can help to prevent or treat pathologies, including sickle-cell anemia, gout, and amyloid fibers, that are driven by protein crystallization.

Research Group: 

  • Postdoctoral research associates: Jack Jacob, Yuly Andrea Jaimes-Lizcano
  • Graduate students: Michael Byington, Narendra Dewangan, Nayoung Park, Ryan Poling-Skutvik, Ryan Roberts, Mohammad Safari, Maxwell Smith, Vivek Yadav
  • Undergraduate students: Anisleidys Garcia, Tara Mars

Awards & Honors: 

2015 University of Houston WGRC Distinguished Faculty Scholar, Pre-Tenure
2014 Participant, Arab-American Frontiers of Science, Engineering and Medicine
2013 Participant, National Academies Keck Futures Initiative
2013 Junior Faculty Research Excellence Award, Cullen College of Engineering
2012 NSF CAREER
2010 University of Houston New Faculty Award
2005–2007 INEST Postdoctoral Fellowship
1999–2002 NSF Graduate Fellowship

Professional Activities: 

Member: American Physical Society, American Chemical Society, American Institute of Chemical Engineers, and the Society of Rheology.

Journal reviewer: Advanced Materials, Biophysical Journal, European Journal of Physics E, Integrative Biology, Langmuir, Journal of Rheology, Measurement Science and Technology, Nanotechnology, Nature Communications, PLoS One, PNAS, RSC Advances, Soft Matter.

Proposal reviewer: American Chemical Society Petroleum Research Fund, National Science Foundation (CBET, DMR, MPS), Leaders Opportunity Fund/Canada Foundation for Innovation, Wellcome Trust/DBT India Alliance, Center for Functional Nanomaterials (Brookhaven National Laboratory), Research Grant Council of Hong Kong.

Journal Papers / Refereed Journal Publications

  1. F. Babayekhorasani, D. E. Dunstan, R. Krishnamoorti, and J. C. Conrad,

    “Nanoparticle dispersion in disordered porous media with and without polymer additives.” Soft Matter 12, 5676–5683 [DOI]

    , 2016
  2. H. Chen, A. E. V. Hagström, J. Kim, G. Garvey, A. Paterson, F. Ruiz-Ruiz, B. Raja, U. Strych, M. Rito-Palomares, K. Kourentzi, J. C. Conrad, R. L. Atmar, and R. C. Wilson,

    “Flotation immunoassay: masking the signal from free reporters in sandwich immunoassays.” Sci. Rep. 2, 24297 [DOI]

    , 2016
  3. L. Ni, S. Yang, R. Zhang, Z. Jin, H. Chen, J. C. Conrad, and F. Jin,

    “Bacteria differently deploy type-IV pili on surfaces to adapt to nutrient availability.” npj Biofilms Microbiomes 2, 15029 [DOI]

    , 2016
  4. M. C. Byington, M. S. Safari, J. C. Conrad, and P. G. Vekilov,

    “Protein conformational flexibility enables the formation of dense liquid clusters: tests using solution shear.” J. Phys. Chem. Lett. 7, 2339–2345 [DOI]

    , 2016
  5. R. Pandey and J. C. Conrad,

    “Gelation in mixtures of polymers and bidisperse colloids.” Phys. Rev. E 93, 012610 [DOI]

    , 2016
  6. R. Poling-Skutvik, K. I. S. Mongcopa, A. Faraone, S. Narayanan, J. C. Conrad, and R. Krishnamoorti,

    “Structure and dynamics of interacting nanoparticles in semidilute polymer solutions.” Macromolecules Article ASAP. [DOI]

    , 2016
  7. S. Sharma*, Y. A. Jaimes-Lizcano*, R. B. McLay, P. C. Cirino, and J. C. Conrad,

    “Sub-nanometric roughness affects deposition and mobile adhesion of Escherichia coli on silanized glass surfaces.” Langmuir 32, 5422–5433 [DOI]

    , 2016
  8. V. Yadav, A. V. Harkin, M. L. Robertson, and J. C. Conrad,

    “Hysteretic memory in pH-response of water contact angle on poly(acrylic acid) brushes.” Soft Matter 12, 3589–3599 [DOI]

    , 2016
  9. J. D. C. Jacob, K. He, S. T. Retterer, R. Krishnamoorti, and J. C. Conrad,

    “Diffusive dynamics of nanoparticles in ultra-confined media.” Soft Matter 11, 7515–7524 [DOI]

    , 2015
  10. J. Kim, M. Adhikari, S. Dhamane, A. E. V. Hagström, K. Kourentzi, U. Strych, R. C. Willson, and J. C. Conrad,

    “Detection of viruses by counting single fluorescent genetically biotinylated reporter immunophage using a lateral flow assay.” ACS Appl. Mater. Interfaces 7, 2891–2898 [DOI]

    , 2015
  11. M. Adhikari, U. Strych, J. Kim, H. Goux, S. Dhamane, M.-V. Poongavanam, A. E. V. Hagström, K. Kourentzi, J. C. Conrad, and R. C. Willson,

    “Aptamer-phage reporters for ultrasensitive lateral flow assays.” Anal. Chem. 87, 11660–11665 [DOI]

    , 2015
  12. M. S. Safari, M. A. Vorontsova, R. Poling-Skutvik, P. G. Vekilov, and J. C. Conrad,

    “Differential dynamic microscopy of weakly scattering and polydisperse protein-rich clusters.” Phys. Rev. E 92, 042712 [DOI]

    , 2015
  13. R. Poling-Skutvik, R. Krishnamoorti, and J. C. Conrad,

    “Size-dependent dynamics of nanoparticles in unentangled solutions of polyelectrolytes.” ACS Macro Lett. 4, 1169–1173 [DOI]

    , 2015
  14. S. He, Y. Jiang, J. C. Conrad, and G. Qin,

    “Molecular simulation of natural gas transport and storage in shale rocks with heterogeneous nano-pore structures.” J. Petrol. Sci. Eng. 133, 401–409 [DOI]

    , 2015
  15. F. Babaye Khorasani, R. Poling-Skutvik, R. Krishnamoorti, and J. C. Conrad,

    “Mobility of nanoparticles in semidilute polyelectrolyte solutions.” Macromolecules 47, 5328–5333 [DOI]

    , 2014
  16. K. He, S. T. Retterer, B. R. Srijanto, J. C. Conrad, and R. Krishnamoorti,

    “Transport and dispersion of nanoparticles in periodic nanopost arrays.” ACS Nano 8, 4221–4227 [DOI]

    , 2014
  17. R. Pandey, M. Spannuth, and J. C. Conrad,

    “Confocal imaging of confined quiescent and flowing colloid-polymer mixtures.” J. Vis. Exp. e51461 [DOI]

    , 2014
  18. S. Sharma and J. C. Conrad,

    “Attachment from flow of Escherichia coli bacteria onto silanized glass substrates.” Langmuir 30, 11147–11155 [DOI]

    , 2014
  19. K. He, F. Babaye Khorasani, S. T. Retterer, D. K. Thomas, J. C. Conrad, and R. Krishnamoorti,

    “Diffusive dynamics of nanoparticles in arrays of nanoposts.” ACS Nano 7, 5122–5130 [DOI]

    , 2013
  20. R. Pandey and J. C. Conrad,

    “Dynamics of confined depletion mixtures of polymers and bidispersed colloids.” Soft Matter 9, 10617–10626 [DOI]

    , 2013
  21. S. P. George, H. Chen, J. C. Conrad, and S. Khurana,

    “Regulation of directional cell migration by membrane-induced actin bundling.” J. Cell. Sci. 126, 312–326 [DOI]

    , 2013
  22. J. C. Conrad,

    “Quantifying collective behavior in mammalian cells.” Proc. Natl. Acad. Sci. USA 109, 7591–7592 [DOI]

    , 2012
  23. J. C. Conrad,

    “Physics of bacterial near-surface motility using flagella and type IV pili: implications for biofilm formation.” Res. Microbiol. 163, 619–629 [DOI]

    , 2012
  24. K. He, M. Spannuth, J. C. Conrad, and R. Krishnamoorti,

    “Diffusive dynamics of nanoparticles in aqueous dispersions.” Soft Matter 8, 11933–11938 [DOI]

    , 2012
  25. M. Spannuth and J. C. Conrad,

    “Confinement-induced solidification of colloid-polymer depletion mixtures.” Phys. Rev. Lett. 109, 028301 [DOI]

    , 2012
  26. R. F. Shepherd, J. C. Conrad, T. Sabuwala, G. G. Gioia, and J. A. Lewis,

    “Structural evolution of cuboidal granular media.” Soft Matter 8, 4795–4801 [DOI]

    , 2012
  27. R. Pandey and J. C. Conrad,

    “Effects of attraction strength on microchannel flow of colloid-polymer depletion mixtures.” Soft Matter 8, 10695-10703 [DOI]

    , 2012
  28. F. Jin*, J. C. Conrad*, M. L. Gibiansky, and G. C. L. Wong (*Equal contribution),

    “Bacteria use type-IV pili to slingshot on surfaces.” Proc. Natl. Acad. Sci. USA 108, 12617–12622 [DOI]

    , 2011
  29. J. C. Conrad*, M. L. Gibiansky*, F. Jin, V. D. Gordon, D. A. Motto, M. A. Mathewson, W. G. Stopka, D. C. Zelasko, J. D. Shrout, and G. C. L. Wong (*Equal contribution),

    “Flagella and pili-mediated near-surface single-cell motility mechanisms in P. aeruginosa.” Biophys. J.100, 1608–1616 [DOI]

    , 2011
  30. J. C. Conrad, S. R. Ferreira, J. Yoshikawa, R. F. Shepherd, B. Y. Ahn, and J. A. Lewis,

    “Designing colloidal suspensions for directed materials assembly.” Curr. Opin. Colloid Interface Sci.16, 71–79 [DOI]

    , 2011
  31. J. C. Conrad and J. A. Lewis,

    “Structural evolution of colloidal gels during constricted microchannel flow.” Langmuir 26, 6102–6107 [DOI]

    , 2010
  32. J. C. Conrad, H. M. Wyss, S. Manley, V. Trappe, K. Miyazaki, L. J. Kaufman, A. B. Schofield, D. R. Reichman, and D. A. Weitz,

    “Arrested fluid-fluid phase separation in depletion systems: implications of the characteristic length on gel formation and rheology.” J. Rheol. 54, 412–438 [DOI]

    , 2010
  33. M. L. Gibiansky*, J. C. Conrad*, F. Jin, V. D. Gordon, D. A. Motto, M. A. Mathewson, W. G. Stopka, D. C. Zelasko, J. D. Shrout, and G. C. L. Wong (*Equal contribution),

    “Bacteria use type IV pili to walk upright and detach from surfaces.” Science 330, 197 [DOI]

    , 2010
  34. D. J. Harris, J. C. Conrad, and J. A. Lewis,

    “Evaporative lithographic patterning of binary colloidal films.” Phil. Trans. R. Soc. A. 367, 5157–5165 [DOI]

    , 2009
  35. J.C. Conrad and J.A. Lewis,

    “Structure of colloidal gels in microchannels.” Langmuir 24, 7628–7635 [DOI]

    , 2008
  36. D.J. Harris, H. Hu, J.C. Conrad, and J.A. Lewis,

    “Patterning colloidal films via evaporative lithography.” Phys. Rev. Lett. 98, 148301 [DOI]

    , 2007
  37. J.C. Conrad, P.P. Dhillon, E.R. Weeks, D.R. Reichman, and D.A. Weitz,

    “Contribution of slow clusters to the bulk elasticity near the colloidal glass transition.” Phys. Rev. Lett. 97, 265701 [DOI]

    , 2006
  38. P.J. Lu, J.C. Conrad, H.M. Wyss, A.B. Schofield, and D.A. Weitz,

    “Fluid of clusters in attractive colloids.” Phys. Rev. Lett. 96, 028306 [DOI]

    , 2006
  39. R.F. Shepherd, J.C. Conrad, S.K. Rhodes, D.R. Link, M. Marquez, D.A. Weitz, and J.A. Lewis,

    “Microfluidic assembly of homogeneous and Janus colloid-filled hydrogel granules.”Langmuir 22, 8618–8622 [DOI]

    , 2006
  40. J.C. Conrad, F.W. Starr, and D.A. Weitz,

    “Weak correlations between local density and dynamics in liquids near the glass transition.” J. Phys. Chem. B 109, 21235–21240 [DOI]

    , 2005
  41. S. Manley, H.M. Wyss, K. Miyazaki, J.C. Conrad, V. Trappe, L.J. Kaufman, D. R. Reichman, and D. A. Weitz,

    “Dynamic arrest in spinodal decomposition as a route to gelation.” Phys. Rev. Lett. 95, 238302 [DOI]

    , 2005

Conference Proceedings Publications

  1. M. Spannuth and J. C. Conrad,

    “Dynamics of confined colloid-polymer mixtures.” AIP Conf. Proc. 1518, 351–356 [DOI]

    , 2013