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Diffusive dynamics of nanoparticles in
ultra-confined media†

Jack Deodato C. Jacob,a Kai He,a Scott T. Retterer,b Ramanan Krishnamoorti*a and
Jacinta C. Conrad*a

Differential dynamic microscopy (DDM) was used to investigate the diffusive dynamics of nanoparticles

of diameter 200–400 nm that were strongly confined in a periodic square array of cylindrical nanoposts.

The minimum distance between posts was 1.3–5 times the diameter of the nanoparticles. The image

structure functions obtained from the DDM analysis were isotropic and could be fit by a stretched exponential

function. The relaxation time scaled diffusively across the range of wave vectors studied, and the corresponding

scalar diffusivities decreased monotonically with increased confinement. The decrease in diffusivity could be

described by models for hindered diffusion that accounted for steric restrictions and hydrodynamic interactions.

The stretching exponent decreased linearly as the nanoparticles were increasingly confined by the posts.

Together, these results are consistent with a picture in which strongly confined nanoparticles experience a

heterogeneous spatial environment arising from hydrodynamics and volume exclusion on time scales comparable

to cage escape, leading to multiple relaxation processes and Fickian but non-Gaussian diffusive dynamics.

Introduction

Understanding the dynamics of nanoparticle dispersions in
complex confined media is required to optimize the transport of
nanoparticles in applications such as drug delivery,1,2 enhanced oil
recovery,3,4 environmental remediation, and water treatment.5,6

Natural porous media, viscoelastic matrices, and complex biological
systems all exhibit heterogeneity in pore structure and surface
chemistry.7–11 Particles must therefore be specifically tailored for
transport through targeted media, as their mobility in heterogeneous
porous media is affected by their size12 and surface properties:13 for
example, modifying non-zero valent metal nanoparticles used for
ground water remediation can prevent particles from agglomerating
and becoming trapped by the soil.13 Improved fundamental
understanding of the factors influencing particle transport will
aid the design of nanoparticles for these applications.

As one example, the diffusion of submicron particles confined
in porous media is hindered by crowding, by the presence of
immobile barriers, and by hydrodynamic and steric interactions
between particles and confining walls. Thus particle diffusion
typically becomes slower in confinement. In our earlier study of
the diffusion of modestly confined nanoparticles, in media with
effective void fractions ranging from 0.76 to 0.99, the diffusive

dynamics of the nanoparticles slowed with confinement and the
distribution of displacements became increasingly non-Gaussian.14

Similar slowing of Fickian diffusion coincident with non-Gaussian
distributions of particle displacements has been observed in a
variety of systems, including hard sphere colloidal dispersions,15,16

polymers in an array of pillars,17 nanoparticles in a porous polymer
matrix,18 and colloids in a matrix of entangled F-actin polymers.19

The widespread occurrence of Fickian but non-Gaussian diffusion
suggests a general physical origin of these dynamics.20 Proposed
origins of these dynamics and their signatures include heterogeneity
in the microenvironment,15,16 a crossover between distinct
dynamical regimes,16 or confinement-induced vitrification.21

Additionally, statistical models such as the Lorentz gas22–24 (a
single tracer diffusing in an array of scatterers) can exhibit
slowed and/or anomalous diffusion arising from the interplay
of dynamics and geometry. In experimental systems, particles
also experience different hydrodynamic interactions at different
points in the environment even at macroscopically dilute conditions,
and these differences become greater as particles become more
crowded at higher particle concentrations16,25 or when more strongly
confined.26–28 To identify the mechanisms that affect diffusion at
different confinements requires studies in model media that access
a broad range of particle confinements.

Microfabrication techniques offer the ability to design
model porous media with tunable pore size, pore connectivity,
and surface wettability.17,18,29,30 Using one class of micro-
models that simulate natural porous media, arrays of micro- and
nanoscale posts in silicon and glass microchannels,14,31,32 earlier
experiments examined weak to moderate confinements. Elucidating
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the effects of strong confinement on nanoparticle transport,
however, requires well-controlled media with typical pore or
pore throat sizes of less than one micron. For example, media
with low void fractions would be interesting as models for
natural porous media with very small pore throats, such as
oil-bearing sandstones and shales.33

In this paper, we investigate the dynamics of nanoparticles
diffusing in dense arrays of nanoposts with void fractions ranging
from 0.38–0.89. To access this regime of strong confinement,
arrays of silicon nanoposts arranged on a square lattice with
edge-to-edge spacings of 400–2000 nm were fabricated using a
combination of lithography and chemical vapor deposition
techniques. The diffusion of nanoparticles was quantified in
submicron confinement in these arrays using differential
dynamic microscopy (DDM). In even the strongest confinement
nanoparticle diffusion was isotropic; the mobility could hence
be characterized by an average diffusion coefficient and by a
stretching exponent, which was related to the heterogeneity of
the diffusive dynamics. The slowing of diffusion with increased
confinement was in good agreement with that predicted by
models for hindered diffusion28,34,35 incorporating only steric
restrictions and hydrodynamic drag. The stretching exponent
decreased approximately linearly with increasing confinement.
The success of hindered diffusion models in describing the
diffusivity of the nanoparticles suggests that volume exclusion
and hydrodynamic interactions in strong confinement likely
generate spatial heterogeneity, although contributions from the
crossover in dynamics expected as particles escape the pores

defined by the nanoposts cannot be excluded. These physical
processes lead to Fickian but non-Gaussian nanoparticle dynamics.
These findings improve our understanding of the origins of
non-Gaussian particle mobility in strongly confined porous media.

Results and discussion

Time-resolved fluorescence optical micrographs were collected
for nanoparticles of diameter 200, 300, and 400 nm diffusing in
the bulk and in microfabricated post arrays (Fig. 1). The edge-
to-edge spacing between posts ranged from 0.4 mm to 2 mm,
corresponding to void fractions (y) of 0.38 to 1, throat confinement
parameter (z) of 0 to 0.76, and pore confinement parameters l of 0
to 0.39 (Table 1). From the time series of fluorescence images,
the delay-time dependences of the azimuthally averaged image
structure function D(q, Dt) were calculated. To ensure that the
dynamics were isotropic, azimuthal averaging in the x–y plane
was performed along arcs spanning �151 in directions parallel
to the sides and to the diagonals of the nanopost array. The
dynamics of 300 nm particles diffusing freely and confined in
different nanopost arrays are isotropic in all directions, as
shown by comparing the image structure functions (ISFs) in
Fig. 2. The ISFs measured along the open direction in the
nanopost array (901) are indistinguishable from those measured
along the diagonal of the post arrays (1351) and from those
obtained by averaging over all angles. The diffusive dynamics
observed in this study remain isotropic across all confinements
investigated and hence a single scalar diffusivity can be used to
describe the dynamics within each nanopost array.

The image structure function (ISF) of particles freely diffusing
in bulk can be fitted using a simple exponential model,

Dðq;DtÞ ¼ AðqÞ 1� exp � Dt
tðqÞ

� �� �
þ BðqÞ (1)

where the signal prefactor A(q) depends on the scattering
properties of the particles, the light source and the system
optics, B(q) is the background noise of the system, and t(q) is
the q-dependent relaxation time.36 In previous work on unconfined
and freely-diffusing nanoparticles, we showed that the distribution
of nanoparticle displacements was well described by a simple
Gaussian function and that under these conditions the ISF was
well fit by a simple exponential function.37 Here eqn (2) describes
the diffusion of unconfined particles in bulk (Fig. 3(a)). In previous
work, we found that the prefactor A(q) decreased monotonically
with increasing q; for dilute samples (f o 10�4) B(q) depended
only on the optics of the microscope and was independent of
concentration and particle size.37 Here A(q) also decreases

Fig. 1 Scanning electron micrograph of 500 nm-diameter cylindrical post
arrays with 1.0 mm post spacing. S denotes the minimum spacing between posts
and P denotes the diagonal spacing between posts of the square post array.

Table 1 Post spacing, heights, void fraction, and confinement parameters for nanoparticles diffusing in post arrays

Designed spacing
[mm]

Measured spacing (S)
[mm]

Height
[mm]

Void fraction y z = dNP/S l = dNP/P

200 nm 300 nm 400 nm 200 nm 300 nm 400 nm 200 nm 300 nm 400 nm

2 1.93 � 0.06 11.6 � 0.1 0.89 0.22 0.13
1 1.08 � 0.17 12.5 � 0.1 0.85 0.80 0.75 0.19 0.28 0.37 0.11 0.17 0.23
0.8 0.84 � 0.14 12.4 � 0.1 0.79 0.72 0.65 0.24 0.36 0.48 0.14 0.22 0.29
0.4 0.40 � 0.01 11.9 � 0.1 0.38 0.76 0.39
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monotonically. For this experimental setup, B(q) is nearly
constant across all wave vectors q (Fig. S5–S7 in the ESI†). At
high q values, the short time plateaus of the ISFs are not well
resolved. Therefore, to determine a best fit we choose as the
initial value for B(q) a wave-vector-independent value that was
obtained from fitting of the low-q ISF data.

When the nanoparticles are confined, the image structure
function (ISF) can no longer be fitted using the simple exponential
function in eqn (1). Neither the short-time plateau nor the
turnover to the long-time plateau can be well described by an
exponential, as shown in Fig. 3(b) and (c), and the deviation
from an exponential fitting function becomes increasingly
pronounced as confinement is increased. Instead, the ISF is
fitted using a stretched exponential model,14

Dðq;DtÞ ¼ AðqÞ 1� exp � Dt
tðqÞ

� �rðqÞ
( )" #

þ BðqÞ (2)

Four parameters (A(q), B(q), t(q), and the stretching exponent
r(q)) were extracted from the non-linear least squares fitting of

the ISF data, as shown in Fig. 3 and in the ESI† in Fig. S5–S17.
To interpret the diffusive dynamics we focus on two fitting
parameters, t(q) and r(q).

The stretching exponent r(q) measures the deviation of the
distribution of particle displacements from Gaussian behavior.
In previous work, we showed that the stretching exponent
characterizing the non-Gaussian behavior of the distribution of
particle displacements, obtained from particle-tracking, was propor-
tional to the stretching exponent characterizing the deviation of the
ISF from a simple exponential function, obtained by applying DDM
to the same series of microscopy images.14 The stretching exponents
r(q) obtained for all particles and all confinements in these
experiments are shown as a function of wave vector q in Fig. 4.
We find that r(q) is nearly constant at wave vectors below q E 2
mm�1. At higher wave vectors, r(q) decreases slightly as q increases;
the value of q at the crossover (e.g. for which r(q) o 0.95hr(q)i) is
approximately constant across the limited range of conditions for
which we observe a decrease in r(q) (reported in Table S1 of the
ESI†). Given the magnitude of the error bars, especially at high q,
no systematic understanding of the q-dependence of r(q) is feasible.

Fig. 2 (top) Schematic of experiments and averaging procedure. Azimuthal averaging is performed along arc lengths parallel to and perpendicular to the
post arrays. (bottom) Image structure function D(q, Dt) as a function of delay time Dt at q = 1 mm�1 for 300 nm diameter particles (a) diffusing freely and in
three different post arrays: (b) S = 1.0 mm, z = 0.28; (c) S = 0.8 mm, z = 0.36; (d) S = 0.4 mm, z = 0.76. Red diamonds represent particles travelling between
posts, blue circles represent particles diffusing toward the posts, and black triangles represent the isotropic average of all particles.
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The relaxation time t(q) is related to the diffusion coefficient
D via D = 1/t(q)q2. Because the stretching exponent r(q) varies
somewhat across the wave vectors accessible in our setup,
we first determine the sensitivity of the diffusivities to the
parameters obtained from the fits to the ISF. The diffusivity is
calculated from the wave-vector dependence of the relaxation
time t(q) via D = 1/t(q)q2. To ascertain the robustness of the
fitted diffusivities, we therefore compare t(q) obtained using
two different fit values for the stretching exponent: using the
freely-fitted r(q) values (shown in Fig. 4), and using the average
value of r(q), hr(q)i, over the range of wave vectors (0.5 mm�1 o
q o 2 mm�1) for which r is nearly independent of q. Both
processes used to determine r(q) produce values of t(q) that are
equal within the errors of the measurement, as shown in Fig. 5.
We conclude that the relaxation time t(q) is insensitive to the
details of the fitting process and is robust for our measurements,
and use hr(q)i to obtain t(q) for each combination of particle size
and nanopost spacings. In all experiments, t(q) scales as q�2

over the range of accessible q values investigated (Fig. 6 and
Fig. S18–S20 in the ESI†), indicating that the dynamics remain
Fickian diffusive over these length and time scales. At a fixed

value of q, the relaxation time t(q) increases as the spacing
between posts decreases, indicating that increasing confinement
slows the diffusive dynamics of the nanoparticles.

We calculate D for each combination of particle size and post
spacing from the slope of t(q) versus q2. The resulting relative
diffusivities D/D0 decrease as void fraction y is decreased and
confinement parameters z and l are increased, as shown in Fig. 7,
and fall onto a single curve for the three sizes of nanoparticles
studied here. Initially, the decrease in relative diffusivity is nearly
linear with y and z, as also reported in our earlier study;14 particles
experiencing the strongest confinements, however, exhibit
diffusivities that are somewhat larger than those expected by
extrapolating from low-to-moderate confinements. For the strongest
confinement, where the minimum distance between posts is
B1.3 times the diameter of the nanoparticle, the particle diffusivity
decreases to B40% of that in the bulk. This decrease is similar in
magnitude to that previously measured for nanoparticles diffusing
very close to surfaces; for example, the diffusivity of a nanoparticle
confined within a cylindrical cavity decreased from 75% to 45% of
the bulk diffusivity when the distance between the particle and wall
was reduced from nine to three particle diameters.26

Fig. 3 Image structure function D(q, Dt) as a function of delay time Dt at q = 1 mm�1 for 300 nm diameter particles (a) diffusing freely and in two different
post arrays: (b) S = 0.8 mm, z = 0.36; (c) and S = 0.4 mm, z = 0.76. Solid blue lines represent fits to a simple exponential model (E, eqn (1)) and dashed red
lines represent fits to a stretched exponential model (SE, eqn (2)).

Fig. 4 Stretching exponent r(q) as a function of the magnitude of the wave vector q (in mm�1) for (a) 400 nm nanoparticles diffusing in the bulk (black
circles) and in post arrays with S = 2 mm, z = 0.21 (blue down triangles), S = 1 mm, z = 0.37 (green diamonds) and S = 0.8 mm, z = 0.48 (yellow up triangles);
(b) 300 nm nanoparticles diffusing in the bulk (black circles) and in post arrays with S = 1 mm, z = 0.28 (green diamonds), S = 0.8 mm, z = 0.36 (yellow
up triangles) and S = 0.4 mm, z = 0.76 (red squares); (c) 200 nm nanoparticles diffusing in the bulk (black circles) and in post arrays with S = 1 mm, z = 0.19
(green diamonds) and S = 0.8 mm, z = 0.24 (yellow up triangles).
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The slowing of nanoparticle diffusion observed here is
reminiscent of that observed in a statistical model, the Lorentz
gas.23,24 In this family of models, diffusive-like motion of a
single tracer particle arises from its interactions with an array

of scatterers. We compare the slowing of the diffusion in our
system to that obtained for two Lorentz gas systems, 2-d
square38 and hexagonal39 lattices. In the long-time limit, our
particles move diffusively (with diffusion scaling linearly with

Fig. 5 Relaxation time t(q) (in seconds) as a function of the magnitude of the wave vector q (in mm�1) for 300 nm nanoparticles diffusing in post arrays
with (a) S = 1 mm, with r(q) fixed at hr(q)i = 0.92 and r(q) varied from q = 0.63–0.92 mm�1; (b) S = 0.8 mm, with r(q) fixed at hr(q)i = 0.89 and r(q) varied from
q = 0.74 – 0.89 mm�1; and (c) S = 0.4 mm, with r(q) fixed at hr(q)i = 0.73 and r(q) varied from q = 0.56–0.73 mm�1. Black arrows indicate the range of wave
vectors over which the average stretching exponent hr(q)i is calculated.

Fig. 6 Relaxation time t(q) (in seconds) as a function of the magnitude of the wave vector q (in mm�1) for (a) 400 nm nanoparticles diffusing in the bulk
(black circles) and in post arrays with S = 2 mm, z = 0.21 (blue down triangles), S = 1 mm, z = 0.37 (green diamonds), and S = 0.8 mm, z = 0.48 (yellow up
triangles); (b) 300 nm nanoparticles diffusing in the bulk (black circles) and in post arrays with S = 1 mm, z = 0.28 (green diamonds), S = 0.8 mm, z = 0.36
(yellow up triangles), and S = 0.4 mm, z = 0.76 (red squares); (c) 200 nm nanoparticles diffusing in the bulk (black circles) and in post arrays with S = 1 mm,
z = 0.19 (green diamonds) and S = 0.8 mm, z = 0.24 (yellow up triangles). Black lines indicate a function that decays as q�2.

Fig. 7 Relative diffusivity D/D0 as a function of (a) void fraction y and confinement parameters (b) x and (c) l for aqueous dispersions of nanoparticles of
diameter of 400 nm (black circles), 300 nm (red triangles) and 200 nm (blue diamonds) measured by DDM. The solid and dashed black lines in (c) indicate
the centerline approximation and the cross sectional averaging expressions for diffusion in slit pores (eqn (3) and (4)).
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time), whereas in the 2-d square lattice gas diffusion scales as
Bt log t [ref. 38]. In 2-d hexagonal lattices confinement is
parameterized by the minimum spacing between scatterers,
normalized by the post radius, w = S/dP. To account for the
finite size of the nanoparticles we define an effective confinement

w ¼ S � dNPð Þ
�

dP

2
þ dNP

2

� �
. Studies of the diffusivity of Lorentz

gases in 2-d hexagonal lattices focus on the high-density regime

wo
4ffiffiffi
3
p � 2 � 0:31

� �
. Our study accesses 0.25 o w o 3.56 and

includes only one data point in the high density regime: for
w E 0.25, D/D0 E 0.40. This value is somewhat larger than the
value reported in computer simulations (D/D0 E 0.2).40

To understand the origins of the reduced diffusivity, we
consider several physical factors. The particles are stabilized
with a nonionic surfactant and are negatively charged; the
silica-coated posts are also negatively charged. We therefore
expect that chemical interactions between the particles and
posts are negligible: screened electrostatic interactions prevent
particles from sticking to the posts and ensure that van der
Waals interactions do not significantly affect diffusion. Instead,
we posit that the decrease in relative diffusivity as nanoparticles
become more confined arises from the interplay of hydrodynamic
interactions and steric repulsion of the nanoparticles with the
posts as the post density increases.31,41,42 A particle diffusing in
an unbounded fluid experiences a hydrodynamic drag force that
opposes its direction of motion. Close to a solid surface, however,
this drag force on the particle increases and hence particle
diffusion becomes hindered.4,43–45 Furthermore, hydrodynamic
interactions become increasingly important as nanoparticles
become more confined, due to the increased steric repulsion
that particles experience when they approach hard walls.46

To test the idea that the decrease in diffusion results from
hydrodynamic interactions and steric repulsion, we compare
the relative diffusivities to predictions from analytical models
for hindered diffusion valid for dilute dispersions. In this class
of models, unstructured porous media are replaced by arrays
of cylindrical27,41 or slit pores35 and the relative diffusivity of
nanoparticles in these structured media is modeled by accounting
for steric restriction and for particle-wall hydrodynamic inter-
actions.28 These models require several assumptions: (i) that the
solvent (here, water) can be treated as a continuum; (ii) that the
particle has adequate time to sample all cross-sectional positions in
the pore; and (iii) that particle–particle interactions are negligible.
Faxen derived the lag coefficients of a sphere between two parallel
walls by approximating the drag on the sphere everywhere within
the slit as equal to the drag on a particle sitting on the center line of
the slit and obtained the centerline approximation47

D

D0
¼ ð1� lÞ 1� 1:004lþ 0:418l3

�
þ 0:21l4 � 0:169l5 þO l6

� 		 (3)

valid for a relative solute size of l r 0.5. Weinbaum et al. derived
the lag coefficients of a sphere between two parallel walls48 and
averaged the results over the cross-section to calculate the relative

diffusivities at different points between the plates.49 Dechadilok
et al. performed a least-squares fitting of these diffusivities and
produced the cross-sectional averaging expression28

D

D0
¼ 1þ 9

16
l ln l� 1:19358lþ 0:4285l3 þ 0:3192l4 þ 0:08428l5

(4)

valid for lr 0.8. We fit the relative diffusivities as a function of the
confinement parameter that incorporates the characteristic pore
radius, l, using eqn (3) and (4), and find that the dependence on l is
in good agreement with that predicted by the hindered diffusion
models, even though our geometry is not quite that of a slit pore;
within our experimental errors, we cannot distinguish between the
two models. We conclude that steric restrictions and hydrodynamic
drag can generate the observed decrease in relative diffusivity for
nanoparticles diffusing in post arrays.

The q�2 dependence of the relaxation time, t(q), obtained
from the ISF, indicates that the dynamics of confined nano-
particles remains diffusive. The diffusivities extracted from the
ISFs, however, are derived from averaged measurements of
relaxation times; the extent to which the distribution of relaxation
times deviates from a Gaussian distribution can be measured by
the value of the stretching exponent, r(q), obtained from fitting
the ISFs. The stretching exponent r(q) for particles freely diffusing
in the bulk is equal to unity, indicating that a single relaxation
process is involved and thus the displacement distributions of
the particles are Gaussian. In moderate to strong confinement,
however, the ISFs of particles cannot be fit with a simple
exponential expression, as expected for a relaxation process with
a single timescale; instead, to properly describe these ISFs
requires a stretched exponential model. In disordered systems,
stretched exponential distributions of relaxation times have been
ascribed to competing relaxation processes with distinct relaxation
times.14,50 A value of r(q) o 1 in this study hence suggests the
existence of multiple relaxation processes. To investigate the effect
of confinement on relaxation processes we therefore examine the
stretching exponent, averaged over the range of low q values for
which r(q) does not depend on q (Fig. 4). The average stretching
exponent hr(q)i decreases as the particles are increasingly
confined, as shown in Fig. 8, indicating that the distribution of
nanoparticle displacements becomes more non-Gaussian with
increasing confinement.

In our earlier study of nanoparticle diffusion in moderately
confined nanopost arrays, the probability distributions of
particle displacements obtained using particle tracking could
not be fitted using a Gaussian distribution model even though
the particles exhibited diffusive dynamics at all accessible time
scales. Instead, a model combining a Gaussian distribution (for
short displacements) and a stretched Gaussian distribution (for
long displacements) was required to fit the distributions of
particle displacements.14 Similar stretched Gaussian distributions
are needed to fit the distributions of displacements for the 400 nm
particles in these experiments (Fig. S21–S23 in the ESI†). Given the
observation of non-Gaussian dynamics, the diffusive dynamics
measured in these experiments likely do not access the fully
asymptotic hydrodynamic limit. Non-Gaussian distributions of
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particle displacements reflect heterogeneity that is not averaged
out on the time and length scales of the experiment.15 Indeed,
similarly Fickian but non-Gaussian Brownian diffusion has
been reported in a wide range of systems15,19,20,51,52 Although
these varied results suggest that Fickian but non-Gaussian diffusion
is a general feature of pre-asymptotic colloidal dynamics,16 the
physical origin of this phenomenon remains unclear and may arise
from dispersity of either nanoparticle or microenvironment,
vitrification due to caging-induced confinement,21 and/or the
existence of more than one diffusion process due to the hetero-
geneity of the system. In our experiments, polydispersity is an
unlikely origin for the dynamics, as our nanoparticles are nearly
monodisperse and we visually confirm that nanopost arrays are
spatially uniform across the field of view in each experiment.

We next consider explanations related to spatial heterogeneity.
Granick et al. suggested that the non-Gaussian distribution of
particle displacements could be obtained by convolving independent
Gaussian diffusion processes.35 Our model nanopost arrays contain
posts and void spaces and are thus spatially heterogeneous. At
different locations within the system the nanoparticles experience
different hydrodynamic interactions, which depend on the distance
of the nanoparticles from the nanoposts. In support of this
picture, our relative diffusivities are in good agreement with
those predicted by hydrodynamic models (Fig. 7) that assume
that the particles sample all cross-sectional positions within the
pore volume. These results highlight the importance of hydro-
dynamics in diffusion of nanoparticles in confined media as it
hinders the diffusion of the particles and affects the distribution
of particle displacements.

Finally, we consider heterogeneous dynamics. Yethiraj et al.
found that that Fickian but non-Gaussian dynamics arose in
suspensions of particles of two different sizes.16 On short time
scales only the small tracer particles were mobile, whereas on
long time scales both the small tracers and the large colloids
were mobile. The dynamics of the small tracer particles were Fickian
on short and on very long time scales, and the distributions of
displacements were Gaussian in these limits. On intermediate time
scales between these two limits, however, Yethiraj et al. found that
diffusion remained Fickian but the displacement distribution of the
tracers was non-Gaussian.16 This result suggests that non-Gaussian

distributions of dynamics may arise from the crossover between
distinct dynamical regimes.

In our experiments, there are potentially two distinct diffusive
processes. On short time scales particles are trapped within a
pore defined by the posts; we expect that intrapore diffusion is
affected by the pore size. On long time scales, however, particles
can escape the pore and diffuse between the pores; we expect that
interpore diffusion is affected by the pore throat size and the pore
connectivity. The non-Gaussian dynamics observed in these
experiments could arise during the crossover from intra-pore to
inter-pore diffusion. To test this idea, we calculated the characteristic
time scale on which particles escape from the pore interior,

te ¼

S þ dP

2

� �2
D

. Our experiments span te, which ranges from

0.3–2.2 seconds (Table 2). Our experimental time scales thus can
be classified as ‘‘intermediate,’’ in accord with the idea that our
measurements may not access fully asymptotic hydrodynamic
limit of diffusion. Similarly, our measurements cannot conclusively
determine whether our non-Gaussian dynamics arise from a cross-
over between dynamical regimes. As hydrodynamic interactions
slow down the dynamics of the system and delay the onset of
long-time behavior,16 we cannot rule out a dynamical crossover
solely on the basis of comparison to the hydrodynamic models.
Across the range of accessible wave vectors, however, none of the
ISFs obtained in confinement can be modeled using a single
exponential function; the dynamics are always non-Gaussian.

Fig. 8 Average stretching exponent hr(q)i as a function of (a) void fraction y and confinement parameters (b) z and (c) l for aqueous dispersions of
nanoparticles of diameter of 400 nm (black circles), 300 nm (red triangles), and 200 nm (blue diamonds) measured by DDM.

Table 2 Characteristic escape time te for each combination of particle
size and post spacing investigated in this study

Measured spacing
between posts (S)
[mm]

Particle
diameter
[mm]

Diffusion
coefficient (D)
[mm2 s�1] te ¼

S þ dP

2

� �2
D

[s]

1.93 0.40 0.67 2.2
1.08 0.40 0.49 1.3
1.08 0.30 0.85 0.7
1.08 0.20 1.58 0.4
0.84 0.40 0.42 1.1
0.84 0.30 0.79 0.6
0.84 0.20 1.33 0.3
0.40 0.30 0.49 0.4
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Our earlier study of nanoparticle diffusion in weak to moderate
confinement, which combined DDM and particle tracking experi-
ments,14 also found that a stretched Gaussian model was
required to describe the dynamics over all accessible time scales.
As we cannot access either very short or very long time scales,
however, it is possible that we are unable to detect the asymptotic
hydrodynamic regimes of Fickian and Gaussian dynamics.28,34

Conclusion

The dynamics of strongly confined nanoparticles diffusing in
square nanopost arrays were investigated using differential
dynamic microscopy. The relaxation times scaled diffusively across
all wave vectors, and diffusion remained isotropic in all directions
for even the most strongly confined nanoparticles. The decrease in
diffusivity with increasing confinement could be described by
models for hindered diffusion that accounted for steric restrictions
and hydrodynamic interactions. The stretching exponent was less
than one for all confined systems, consistent with non-Gaussian
distributions of particle displacements, and decreased with
increasing confinement. The decrease in the stretching exponent
was consistent with the emergence of multiple relaxation
processes for the dynamics. The distance between a particle and
the nearest post varied at different locations within the post array,
generating spatial heterogeneity in the hydrodynamic interactions.
Given the success of hindered diffusion models in describing
the particle diffusivity, the multiple relaxation processes likely
reflected these spatial variations in hydrodynamic interactions,
although contributions from the crossover in dynamics expected
as particles escape the pores defined by the nanoposts could not
be excluded. This study demonstrates that microfabricated silicon
nanopost arrays can serve as models for natural porous media with
small pore throats or pores. Moreover, these model systems can be
engineered to exhibit some of the features of highly confined
media by tuning the geometry and wettability of the posts. Studies
identifying the dynamical features that result from such hetero-
geneity will generate additional insight into the processes affecting
nanoparticle transport in natural porous media.

Experimental methods
Nanoparticle dispersions

Surfactant-stabilized Fluo-max dyed red aqueous fluorescent
polystyrene particles with diameter (dNP) of 400 nm were
purchased from Thermo Fisher Scientific CDD. Dispersions
were diluted with deuterium oxide (Sigma-Aldrich) to a volume
fraction of j = 1 � 10�5, corresponding to a number density of
2.8 � 108 ml�1 for 400 nm nanoparticles, to minimize hydro-
dynamic interactions between the particles. A detailed description
of these materials and the sample preparation protocol are
provided in an earlier publication.37

Fabrication and characterization of cylindrical nanopost arrays

Square silicon nanopost arrays of height B12 mm were fabricated
in microfluidic chips to study the effect of extreme confinement

on nanoparticle diffusion. Nanopost arrays with areas of
250 mm � 250 mm were uniformly arranged in a 2 mm �
0.8 mm microfluidic channel. The spacing between posts in each
array was systematically varied from 0.4 to 2 mm (Fig. 1).
Procedures for fabrication of the nanopost arrays are provided
in an earlier publication.14,31

From the diameter and spacing of the posts, measured using
scanning electron microscopy (SEM), we calculated three
metrics to describe the confinement experienced by the nano-
particles (Table 1). The void fraction, y, was determined from:

y ¼
S þ dp
� 	2�3

4
dP þ dNPð Þ2

S þ dPð Þ2
(5)

where S is the edge-to-edge spacing between posts, dP is the
diameter of the silicon posts, and dNP is the diameter of the
nanoparticles. Two additional confinement parameters describing
the confinement experienced in different locations within the
array were defined based on the separation between posts. The
typical throat confinement, experienced by nanoparticles located
between two posts, was z = dNP/S; the typical pore confinement,
experienced by nanoparticles located in the center of the square
lattice, was l = dNP/P, where P is the diagonal distance between posts
in the square array (Fig. 1). The characterization of the post arrays is
summarized in Table 1.

Experimental protocols

Silicon-based microchannels were sealed by a 4 mm thick layer of
polydimethylsilane elastomer (PDMS, Sylgard 184, Dow Corning).
Ports were punched in the PDMS using a Harris Uni-Core (Ted Pella,
Inc., I.D. 0.75 mm) to allow fluid access to the microchannels.
Oxygen plasma was used to oxidize the PDMS and microchannel
surfaces and thereby promote a strong bond between the two
surfaces. The ports on the PDMS were aligned with those of the
microchannel to form a microfluidic device.14

Nanoparticle dispersions were injected into microchannels
using a syringe pump (Harvard Apparatus, Pump 11 Pico Plus
Elite). Tygon microbore tubing (i.d. 0.0100 and o.d. 0.0300, Cole
Parmer, Vernon Hills, IL) was used to connect the PDMS port
and 1 ml plastic syringes (Becton Dickinson, Franklin Lakes, NJ)
with a stainless steel blunt needle (30 gauge Luer polypropylene
hub, length 1/200, Small Parts). After microchannels were filled
with nanoparticle dispersions, the ports were closed to form a
hermetic system. Nanoparticles diffusing in the sealed systems
were imaged on an Olympus BX51 upright microscope equipped
with a 50� objective (Olympus LMPlanFl N, numerical aperture
of 0.5) using a Qiclick digital CCD camera (pixel size of 0.258 �
0.002 mm per pixel, QIClick-F-M-12, Canada) controlled by
StreamPix 5 software (Norpix, Canada). Reflected light was used
to locate each rectangular post array on the microchannel, as
the opacity of the silicon wafer prevented the use of transmitted
light. The system was then switched to fluorescence mode to
image the nanoparticle dispersions at the z plane corresponding
to the midpoint of the posts. In the microscopy experiments, we
collected typically 5000 images over an area of 179.6 mm� 134.2 mm
(corresponding to 696 pixels � 520 pixels) at a frame rate of
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10 frames per second (fps) for 300 and 400 nm particles and
5 fps for 200 nm particles. Particles diffuse in quasi-two-
dimensional confinement in the x–y plane and remain in the
field of view for the duration of the experiment. Occasional
motion in or out of the plane of focus for a short time period
breaks the trajectory, and thus we typically track particles for
100–1000 frames. Edge effects were precluded from our data
collection and analysis as the field of view was smaller than the
post array and care was taken to center the field of view with
that of the array.

Differential dynamic microscopy

We implemented a differential dynamic microscopy (DDM)
algorithm and applied it to the fluorescence microscopy time
series to analyze the diffusive dynamics of nanoparticle in
strong confinement. Briefly, we subtracted pairs of images that
were separated by a fixed lag time Dt, then calculated the
Fourier spectrum of the intensity fluctuations in this time
series of image differences to obtain the image structure
function (ISF) D(q, Dt). The ISF was fitted to different models
to obtain the characteristic relaxation time t(q). Detailed protocols
for image processing and data analysis were described in previous
papers14,37,53 and are summarized in the ESI.† The one-dimensional
DDM data were analyzed with non-linear least-squares fitting based
on the Levenberg–Marquardt algorithm using Origin software
(OriginLab, Northampton, MA). To validate the diffusivities
extracted from DDM, we applied particle-tracking algorithms54

to image series of 400 nm particles and directly calculated
the diffusivities from the ensemble-averaged mean-square
displacements of the particles. The diffusivities measured using
DDM for the 400 nm nanoparticles were in excellent agreement
with those obtained from the particle-tracking analysis, as also
shown in our previous work.14

The accessible range of wave vectors q is determined by the
optical train of the microscopy setup.37 The minimum accessible
scattering wave vector qmin = 2p/L is inversely proportional to the
largest dimension of the image, L. qmax is the smallest resolvable
distance that a particle can travel between two successive images
and is estimated as (qmax)

2 = frame rate/D0, where D0 is the
diffusivity of freely diffusing nanoparticles. The range of q values
was 0.5–3 mm�1 for the 300 and 400 nm particles and 0.5–1.6 mm�1

for the 200 nm particles.

Acknowledgements

R.K. and K.H. acknowledge the support of the Gulf of Mexico
Research Initiative (Consortium for Ocean Leadership Grant SA
12-05/GoMRI-002). J.C.C. acknowledges the support of the
National Science Foundation (DMR-1151133) and the Welch
Foundation (E-1869). A portion of this research was conducted
at the Center for Nanophase Materials Sciences, which is
sponsored at Oak Ridge National Laboratory by the Scientific
User Facilities Division, Office of Basic Energy Sciences, U.S.
Department of Energy.

References

1 O. C. Farokhzad and R. Langer, ACS Nano, 2009, 3, 16–20.
2 R. Tang, C. S. Kim, D. J. Solfiell, S. Rana, R. Mout, E. M. Velázquez-

Delgado, A. Chompoosor, Y. Jeong, B. Yan, Z.-J. Zhu, C. Kim,
J. A. Hardy and V. M. Rotello, ACS Nano, 2013, 7, 6667–6673.

3 A. Roustaei, S. Saffarzadeh and M. Mohammadi, Egypt.
J. Pet., 2013, 22, 427–433.

4 H. Zhang, A. Nikolov and D. Wasan, Energy Fuels, 2014, 28,
3002–3009.

5 W.-x. Zhang, J. Cao and D. Elliott, Nanotechnology and the
Environment, American Chemical Society, 2004, vol. 890,
pp. 248–255.

6 C. M. Kocur, A. I. Chowdhury, N. Sakulchaicharoen, H. K.
Boparai, K. P. Weber, P. Sharma, M. M. Krol, L. Austrins,
C. Peace, B. E. Sleep and D. M. O’Carroll, Environ. Sci.
Technol., 2014, 48, 2862–2869.

7 N. Fakhri, F. C. MacKintosh, B. Lounis, L. Cognet and
M. Pasquali, Science, 2010, 330, 1804–1807.

8 F. Amblard, A. C. Maggs, B. Yurke, A. N. Pargellis and
S. Leibler, Phys. Rev. Lett., 1996, 77, 4470–4473.

9 D. L. Koch and J. F. Brady, Phys. Fluids, 1988, 31, 965–973.
10 P. I. Hurtado, L. Berthier and W. Kob, Phys. Rev. Lett., 2007,

98, 135503.
11 F. Roosen-Runge, M. Hennig, F. J. Zhang, R. M. J. Jacobs,

M. Sztucki, H. Schober, T. Seydel and F. Schreiber, Proc.
Natl. Acad. Sci. U. S. A., 2011, 108, 11815–11820.

12 L. Shang, K. Nienhaus and G. Nienhaus, J. Nanobiotechnol.,
2014, 12, 5.

13 B. Schrick, B. W. Hydutsky, J. L. Blough and T. E. Mallouk,
Chem. Mater., 2004, 16, 2187–2193.

14 K. He, F. Babaye Khorasani, S. T. Retterer, D. K. Thomas, J. C.
Conrad and R. Krishnamoorti, ACS Nano, 2013, 7, 5122–5130.

15 J. Guan, B. Wang and S. Granick, ACS Nano, 2014, 8, 3331–3336.
16 G. Kwon, B. J. Sung and A. Yethiraj, J. Phys. Chem. B, 2014,

118, 8128–8134.
17 D. Wang, C. He, M. P. Stoykovich and D. K. Schwartz, ACS

Nano, 2015, 9, 1656–1664.
18 M. J. Skaug, L. Wang, Y. Ding and D. K. Schwartz, ACS Nano,

2015, 9, 2148–2156.
19 B. Wang, S. M. Anthony, S. C. Bae and S. Granick, Proc. Natl.

Acad. Sci. U. S. A., 2009, 106, 15160–15164.
20 B. Wang, J. Kuo, S. C. Bae and S. Granick, Nat. Mater., 2012,

11, 481–485.
21 M. Spanner, S. Schnyder, F. Höfling, T. Voigtmann and
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