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Abstract
A two-dimensional (r, z) numerical simulation of the discharge characteristics of an atmospheric
pressure plasma jet (APPJ), with coaxial shielding gas, was performed. The helium working gas
flowed in a central capillary tube, engulfing a needle electrode powered by 13.7 MHz radio
frequency sinusoidal voltage. The N2 shielding gas flowed in the annular space of a coaxial
tube. These gases emerged, in laminar flow, in a 78%N2-21%O2-1%Ar dry air ambient. The
characteristics of the APPJ with shielding gas were compared to those of the APPJ without
shielding gas. The nitrogen shielding gas hindered the diffusion of oxygen and argon from the
ambient air into the helium jet. With the shielding gas present, more nitrogen penetrated into the
helium core, causing a shorter plasma ‘plume’. The flow rates of the working and shielding gas,
critically affected the gas temperature, and in turn the discharge characteristics. For a He flow of
2 standard liters per minute (slm), switching on the nitrogen shielding gas flow (at 4.5 slm)
reduced the on-axis O2 and Ar mole fractions from 3.9× 10−4 to 6.8× 10−5 and from
1.9× 10−5 to 3.3× 10−6, respectively, at an axial distance of 3 mm downstream of the nozzle.
The radial profiles of the mole fractions of the ambient gases were monotonically and strongly
decreasing towards the system axis, for short axial distances from the nozzle (∼1 mm), but
became progressively flatter at longer distances from the nozzle (3 mm and 5 mm). Simulation
predictions captured the salient features of experimental data of ambient species mole fractions
in the plasma jet, and the 706 nm optical emission intensity profiles of the He 33S excited state.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Interest continues to increase in low-temperature (cold, non-
equilibrium) atmospheric-pressure plasmas, fueled mainly
by realized and potential biomedical [1–3], materials pro-
cessing [4], and environmental [5] applications. For selec-
ted area exposure, the so-called atmospheric pressure plasma
jet (APPJ) is most popular. A common configuration of
APPJ entails flow of a working gas (most often He or Ar)

through a dielectric capillary tube, in which a plasma is sus-
tained. The plasma ‘plume’ generally extends a few cm from
the end of the tube (nozzle). The jet emanating from the
nozzle naturally entrains ambient gas (usually open air), which
mixes with the working gas resulting in a complex array of
chemical reactions, that produce a plethora of reactive spe-
cies. The composition of the open air ambient gas, however,
is generally uncontrolled. For example, the amount of mois-
ture (humidity) in the open air can change from day to day,
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affecting the concentration of reactive species produced in the
plasma jet [6]. One method to control the ambient gas is to
enclose the system in a chamber flushed with a prescribed
ambient gas composition. Such action, however, would limit
the inherent portability and applications of the APPJ. A more
compact design (figure 1, left) uses a coaxial tube providing
an annular space where a gas of selected composition flows,
forming a curtain that tends to shield the working gas from the
ambient [7, 8]. An APPJ of coaxial shielding gas design has
been marketed as kINPen [9].

The identity and flux of species delivered by an APPJ are
important for applications. In particular, metastable species
of He, Ar, and N2 can profoundly affect the chemistry of the
plasma. For example, He metastables play a significant role in
Penning ionization of molecular gases, including N2 and O2

[10]. Also, N2(A) metastables have relatively long effective
lifetime, making them important in the late afterglow (power
off) of pulsed discharges or far downstream of the nozzle in
continuous wave APPJs [11]. Iseni et al [12] found that the
highest N2(A) concentration was achieved in the case of air
admixtures in spite of the enhanced collisional quenching by
O2. Winter et al [7] measured the He(23S1) metastable density
in an APPJ with a N2/O2 mixture as a shielding gas. The max-
imummetastable density was observed for a shielding gas with
the composition of standard ambient air.When using pure oxy-
gen as the shielding gas, the He metastable density decreased
by 30%. When using pure nitrogen as the shielding gas, the
metastable density was below the detection limit. Schmidt-
Bleker et al [13] used a combination of measurements and a
0-D model to study reaction mechanisms in an Ar APPJ with
varying shielding gas composition from pure N2, to mixtures
with O2, to pure O2. Yatom et al [14] studied a plasma jet fed
with an Ar + 0.26% H2O mixture and shielded by a coaxial
argon flow to keep the water vapor concentration in the jet lar-
ger than that in the ambient air. Furthermore, Jablonowski et al
[15] used a device with shielding gas to enhance the desired
species concentration, thereby achieving greater rates of bac-
teria deactivation. Kapaldo et al [16] studied the effect of react-
ive species on cancer cells using a shielding-gas-controlled
APPJ. Tresp et al [17] investigated the plasma chemistry with
shielding gas composed of different mixtures of oxygen and
nitrogen.

In a simulation study [8], the k-ε turbulent flow model was
used to determine the concentration distribution of the feed
gases and the ambient gas before plasma ignition. Sigeneger
et al [18] simulated a reactor geometrically similar to that
in the present work. However, in their work, the plasma
was sustained in the annular space between the tubes (not in
the central capillary tube). The plasma-activated gas reacted
with the gas flowing through the central tube, immediately
downstream of the nozzle before striking a substrate. A
system involving multiple jets in 2-D cartesian (x, y) geo-
metry was simulated by Babaeva et al [19] This system is
also different than that of the present work since plasma
was ignited in all conduits of the system. Finally, Schmidt-
Bleker et al [20] examined the effect of composition of
the shielding gas (N2, O2, and synthetic air) surrounding a
He APPJ.

Despite the clear advantages of APPJ with coaxial shield-
ing gas, relatively few simulation studies of this configuration
have been reported in the literature. In particular, there is no
systematic study of the behavior of an APPJ with a shielding
gas as compared to the same APPJ without shielding gas. In
the present work, a computational investigation of an APPJ
with a coaxial shielding gas was conducted. The cases repor-
ted here used He, N2 and dry air (78%N2-21%O2-1%Ar) as
the working, shielding and ambient gas, respectively. Results
were compared to an otherwise identical system but without
shielding gas. Simulation predictions were also compared to
experimental data in an APPJ reactor in our laboratory.

2. Simulation model

A schematic of the two-dimensional axisymmetric (r, z)
coaxial jet system studied is shown in figure 1 (left panel).
The system consisted of two coaxial dielectric (quartz) capil-
lary tubes. The helium working gas flowed through the cent-
ral tube (base case of 2 standard liters per minute, slm), while
the nitrogen shielding gas (base case 4.5 slm) flowed in the
annular space between the tubes. The ID (inside diameter)
and OD (outside diameter) of the central tube were 2 mm and
3 mm, respectively. The coaxial tube had an ID = 6 mm and
an OD = 8 mm. A metal needle electrode (1 mm diameter at
the base), coaxial with the tubes, was used to power the dis-
charge with a 2 kV peak-to-peak sinusoidal voltage waveform
at 13.7 MHz. The tip of the needle electrode (with a 350 µm
radius of curvature), was 3mmupstream of the nozzle. Ametal
sheet (axial length 11 mm), was wrapped around the outside
wall of the central tube, and served as the grounded electrode.
The upper edge of this electrode was at the same axial location
as the tip of the needle.

The simulation consisted of two parts: a neutral gas con-
vective mass and heat transport model (without chemical reac-
tions), and a plasma dynamics model with plasma chemical
reactions, involving neutrals, positive and negative ions, as
well as electrons. The larger domain (AMNOA) in figure 1
(middle panel) was used for the neutral gas model, while the
smaller domain (QRSOQ) in figure 1 (right panel) was used
for the plasmamodel. The extend of the computational domain
is a compromise between large enough domain size for more
realistic simulation, and small enough domain size for reas-
onable computational burden. In the present work, the domain
size was chosen so that the experimentally observed ‘plume’
of the plasma jet fit comfortably in the simulation domain.

The helium working gas flowed through the central dielec-
tric tube with a flow rate (Q) ranging from 1.0 slm to 5.0 slm,
corresponding to an average gas flow velocity (at 1 atm and
300 K) of 7.8 m s−1 to 39 m s−1 (based on the cross sec-
tional area between the needle base and the inner wall of the
central tube). The nitrogen shielding gas flowed in the annular
space between the tubes, with a flow rate ranging from 4.5 slm
to 9.0 slm (average velocity of 5.25 m s−1 to 10.5 m s−1).
The Reynolds number was calculated by Re= uρd/µ, where
u, ρ, and µ are the average flow velocity, density, and viscosity
of the gas, respectively, and d is a characteristic length scale

2



J. Phys. D: Appl. Phys. 54 (2021) 075205 P Lin et al

Figure 1. (left panel, units are in mm): Schematic of a He APPJ with coaxial shielding gas (N2) flowing in the annular space. The helium
working gas flows over the needle electrode through the central capillary tube. The shielding gas acts as a curtain that hinders mixing of
ambient gas with the working He gas; (middle panel): schematic of neutral simulation domain AMNOA. Only ‘half’ of the domain is shown
due to the axisymmetric nature of the problem, i.e. the left boundary is the axis of symmetry. Boundaries LM, MN and NO are open to the
ambient. (right panel): plasma dynamics simulation domain. Only half of this domain (i.e. QRSOQ) was used for calculations. Base case
conditions are He flow rate of 2 slm and nitrogen flow rate of 4.5 slm.

(e.g. the central tube inside diameter). The Reynolds number
for the working gas ranged from 32 to 160, suggesting laminar
flow. For the shielding gas, the Reynolds number ranged from
1100 to 2200, marginally in the laminar flow regime. It should
be noted that the coaxial jet flow configuration is amenable to
creation and propagation/growth of disturbances especially in
the shear layer, at the interface between the two jets. This can
cause the critical Reynolds number for transition from laminar
to turbulent flow to be less than that for a single jet.

The species considered in the neutral gas convective mass
and heat transport model were He, N2, O2 and Ar. The spe-
cies considered in the plasma dynamics model were He,
He(23S1) = He*, He2(α3Σu) = He*2, He + , He +

2 , N2, N,
N2(A3Σu

+) = N2(A), N
+
2 , O2, O, O3, O

– , O –
2 , O +

2 , O +
4 ,

NO, and electrons. The reactionmechanism used in the present
work is shown in table 1. It consists of 101 reactions includ-
ing electron impact ionization, excitation, de-excitation, dis-
sociation, recombination, electron attachment, charge transfer,
and Penning ionization [21]. The rate coefficients of electron
impact reactions were calculated using a Maxwellian elec-
tron energy distribution function with cross-sections from the
Phelps [22] and Trinity [23, 24] databases. Table 1 includes
species that were not followed in the simulation, i.e. no mass
balance equations were applied for these species. However,
the reactions involving these species were accounted for in
the electron energy balance equation, contributing to various
channels of electron energy loss (or gain). Only the species
shown on the list above were followed in the simulation. This
is a common practice [25, 26] in order to reduce the computa-
tional burden, yet obtain a more accurate electron energy. Pho-
toionization was not included in the simulation. According to
Breden et al [27], photoionization is not needed to sustain the
discharge, as long as an adequate background electron dens-
ity exists (∼108 cm−3 or higher [28]). The secondary electron

emission coefficient due to ion bombardment of solid surfaces,
γi, was taken as 0.01 for dielectrics and 0.1 for metals [29].

2.1. Neutral gas convective mass and heat transport model

This model predicted the 2-D steady-state gas velocity and
temperature profiles and the mass (or mole) fraction distribu-
tions of the feed gases and the entrained ambient gas before
plasma ignition, i.e. without chemical reactions. The total
mass continuity equation (equation (1)), momentum conser-
vation (Navier–Stokes) equations (equation (2)), species mass
balance equations (equation (3)), and energy balance equation
(equation (4)), were solved for the gas velocity field,mass frac-
tion distribution of the neutral gases (He, N2, O2, Ar) and neut-
ral gas temperature distribution.

∇· (ρu) = 0, (1)

ρ(u ·∇)u=−∇p+∇· [µ(∇u+(∇u)T)]+F, (2)

∂(ρωi)

∂t
+∇· ji =

∑
j

Rij, (3)

ρCp

(
∂Tg
∂t

+ u ·∇Tg
)
=∇· (κ∇Tg)+ q, (4)

where ρ is the mixture density, u is the mass-average velocity,
µ is the dynamic viscosity, p is the pressure, and F is the volu-
metric force vector. Furthermore, ωi is the mass fraction, and
ji is the mass flux of species i. Rij is the rate of production (or
loss) of species i in reaction j. Tg is the neutral gas temper-
ature, Cp is the gas heat capacity, and κ is the thermal con-
ductivity; q is the volumetric power deposition in the gas by
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Table 1. Chemistry used in the simulation. Some reaction rate coefficients are given by an equation of the form k = ATBexp(-C/T).

Helium–nitrogen–oxygen chemistry

Index Reaction Coefficienta Activation (eV) Ref.

Helium chemistry

R1 e + He→e + He b — Phelps database
R2 e + He→e + He* b 19.8 Phelps database
R3 e + He→2e + He+ b 24.6 Phelps database
R4 e + He*→2e + He+ b 4.78 Trinity database
R5 e + He2*→2e + He2+ 1.268 × 10−18 Te

0.71 exp(−3.4/Te) 3.4 [25, 30]
R6 2He*→e + He + He+ 4.5e-16 −15 [25, 27, 30]
R7 2He*→e + He2+ 2.03e-15 −19.6 [31]
R8 He++2He→He2++He 1e-43 — [25, 27, 30, 32]
R9 He* + 2He→He2* + He 1.3e-45 — [25, 27, 30]
R10 e + He*→e + He 2.9e-15 −19.8 [31]
R11 2e + He+→e + He* 5.12 × 10−39 Te

−4.5 −4.78 [33]
R12 e + He+→He 2e-18 −24.6 [34]
R13 e + He2+→He* + He 5.386 × 10−13 Te

−0.5 −0.2 [25, 27, 30]
R14 e + He2+→2He 9e-15 −20 [31]

Nitrogen chemistry

R15 e + N2→e + N2 b — Phelps database
R16 e + N2→e + N2(rot) b 0.02 Phelps database
R17 e + N2→e + N2(v1) b 0.29 Phelps database
R18 e + N2→e + N2(v1, res) b 0.291 Phelps database
R19 e + N2→e + N2(v2) b 0.59 Phelps database
R20 e + N2→e + N2(v3) b 0.88 Phelps database
R21 e + N2→e + N2(v4) b 1.17 Phelps database
R22 e + N2→e + N2(v5) b 1.47 Phelps database
R23 e + N2→e + N2(v6) b 1.76 Phelps database
R24 e + N2→e + N2(v7) b 2.06 Phelps database
R25 e + N2→e + N2(v8) b 2.35 Phelps database
R26 e + N2→e + N2(A3Σu

+ v = 0–4) b 6.17 Phelps database
R27 e + N2→e + N2(A3Σu

+ v = 5–9) b 7 Phelps database
R28 e + N2→e + N2(B 3∏g) b 7.35 Phelps database
R29 e + N2→e + N2(W 3 ∆ g

−) b 7.36 Phelps database
R30 e + N2→e + N2(A3Σu

+ v ≥ 10) b 7.8 Phelps database
R31 e + N2→e + N2(B’ 3Σ) b 8.16 Phelps database
R32 e + N2→e + N2(a’1Σu

−) b 8.4 Phelps database
R33 e + N2→e + N2(a 1∏) b 8.55 Phelps database
R34 e + N2→e + N2(w 1∆) b 8.89 Phelps database
R35 e + N2→e + N2(C 3∏) b 11.03 Phelps database
R36 e + N2→e + N2(E 3Σ) b 11.87 Phelps database
R37 e + N2→e + N2(a’ 1Σ) b 12.25 Phelps database
R38 e + N2→e + N2(sum) b 13 Phelps database
R39 e + N2→2e + N2

+ b 15.6 Phelps database
R40 e + N2→e + 2 N 1 × 10−14 Te

0.5 exp(−16/Te) 9.8 [35]
R41 e + N2

+→2 N 2e-13 −5.8 [31]
R42 2e + N2

+→N2 + e 5.651 × 10−39 Te
−0.8 −15.6 [36]

R43 N2(A3Σ) + N2→2N2 2.2e-20 — [37]
R44 2N2(A3Σ)→N2(B 3∏) + N2 4e-16 — [37]
R45 N2(A3Σ) + N→N + N2 5e-17 — [37]

Oxygen chemistry

R46 e + O2→e + O2 b — Trinity database
R47 e + O2→e + O2(v sum) b 0.193 Trinity database
R48 e + O2→e + O2(a1∆g) b 0.98 Trinity database
R49 e + O2→e + O2(b1Σu

+) b 1.63 Trinity database
R50 e + O2→e + O2(exc) b 4.5 Trinity database
R51 e + O2→2e + O2

+ b 12.06 Trinity database
R52 e + O2→O− + O b 3.6 Trinity database
R53 e + O2→e + 2O b 5.58 Trinity database
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Table 1. (Continued).

Helium–nitrogen–oxygen chemistry

Index Reaction Coefficienta Activation (eV) Ref.

R54 e + O2→e + O + O(1D) b 8.4 Ttrinity database
R55 e + O2 +M→O2

− +M 3.6 × 10−43 Te
−0.5 — [33]

R56 e + O2
+→2O 1.2 × 10−14 Te

−0.7 −6.48 [33]
R57 e + O2

+→O + O(1D) 8.88 × 10−15 Te
−0.7 −3.66 [33]

R58 O2
++O−→O + O2 2 × 10−13 (Tg/300)−1 — [33]

R59 O2
++O−→3O 1e-13 — [33]

R60 O2
++O− + N2→O3 + N2 2.0 × 10−37 (Tg/300)−2.5 — [34]

R61 O2
++O− + O2→O3 + O2 2.0 × 10−37 (Tg/300) −2.5 — [34]

R62 O2
++O− +M→O2 + O +M 2.0 × 10−37 (Tg/300) −2.5 — [34]

R63 O2
++O2

−→2O2 2 × 10−13 (Tg/300)−1 — [33]
R64 O2

++O2
−→O2 + 2O 1e-13 — [33]

R65 O2
++O2

− +M→2O2 +M 2 × 10−37 (Tg/300) −2.5 — [34]
R66 e + O4

+→2O2 3.6 × 10−14 Te
−0.5 −12.06 [38]

R67 O4
++O−→O3 + O2 4e-13 — [34]

R68 O4
++O2

−→3O2 1e-13 — [38]
R69 O4

++O2
− +M→3O2 +M 2e-37 — [38]

R70 O− + O2→e + O3 5.0 × 10−21 (Tg/300)−0.5 — [26, 33]
R71 O2

− + O→e + O3 1.5 × 10−16 (Tg/300)−0.5 — [26, 33]
R72 O2

++O2 +M→O4
++M 2.4e-42 — [38]

R73 O4
++O→O2

++O3 3.0e-16 — [34]
R74 O + O2 + N2→O3 + N2 1.1 × 10−46 exp(510/Tg) — [34]
R75 O + O2 + O2→O3 + O2 6 × 10−46 (Tg/300) −2.8 — [33]
R76 O + O2 + He→O3 + He 3.4 × 10−46 (Tg/300) −1.2 — [33]
R77 O2 + 2O→O3 + O 3.4 × 10−46 (Tg/300) −1.2 — [33]
R78 O + O2 + O3→2O3 2.3 × 10−47 exp(−1057/Tg) — [34]
R79 O + O3→2O2 8 × 10−18 exp(−2060/Tg) — [33, 39]

Helium–nitrogen–oxygen interactions

R80 He++O−→He + O 2 × 10−13 (Tg/300)−1.0 — [40]
R81 He++O− +M→He + O + M 2 × 10−37 (Tg/300)−2.5 — [33]
R82 He++O2

−→O2 + He 2.0 × 10−13 (Tg/300)−1 — [33]
R83 He2++O−→2He + O 1e-13 — [41]
R84 He2++O− +M→2He + O +M 2 × 10−37 (Tg/300)−2.5 — [41]
R85 He2++O2

−→2He + O2 1e-13 — [41]
R86 N2

++O−→N2 + O 2.0 × 10−13 (Tg/300)−0.5 — [42]
R87 N2

++O2
−→N2 + O2 2.0 × 10−13 (Tg/300)−0.5 — [42]

R88 He++N2→N2
++He 5e-16 — [36]

R89 He2++N2→N2
++2He 5e-16 — [36]

R90 He2++N2→N2
++He2* 1.4e-15 — [43]

R91 O− + N2(A3Σ)→N2 + O + e 2.2e-15 — [37]
R92 O2

− + N2(A3Σ)→N2 + O2 + e 2.1e-15 — [37]
R93 N2(A3Σ) + O2→N2 + 2O 5 × 10−18 exp(−200/Tg) — [37]
R94 N2(A3Σ) + O2→O2(a1∆g) + N2 1e-18 — [37]
R95 He* + O3→O2

++O + He + e 2.54 × 10−24 (Tg/300)−0.5 −2.15 [26, 33]
R96 N + O + M→NO +M 5.5 × 10−45 exp(155/Tg) — [44]
R97 N2(A3Σ) + O→NO + N 7e-18 — [42]
R98 He* + N2→e + N2

++He 5e-17 −4.2 [43]
R99 He2* + N2→e + N2

++2He 3e-17 −1 [43]
R100 He* + O2→e + O2

++He 2.6e-16 −7.74 [30]
R101 He2* + O2→e + O2

++2He 3.6e-16 −4.54 [30]
a Rate coefficient in m3s−1 for 2-body reactions, and m6s−1 for 3-body reactions. Te in eV and Tg in K.
b Rate coefficients calculated using cross-section data from the indicated reference. Species M in reactions represents a third-body.
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the plasma. The mass flux included contributions by ordinary
diffusion (first term on the right hand side of equation (5)) and
bulk flow.

ji =−ρDm
i ∇ωi+ ρωiu. (5)

Here,Dm
i = 1−ωi∑

k̸=i
xk
Dik

is themixture-averaged diffusion coef-

ficient of species i, where Dik is the binary diffusion coeffi-
cient between species i and k, calculated using the Chapman–
Enskog theory [45]; xk is the mole fraction of species k. Note
that the neutral gas convective mass and heat transport model
is applied at steady-state without chemical reactions. There-
fore, in equations (3) and (4), the time dependent and reac-
tion terms were set equal to zero. The boundary conditions for
this model corresponded to those in [25]. The pure helium gas
velocity was specified at the inlet of the central tube (in plug
flow), and the pure nitrogen shielding gas velocity was spe-
cified at the inlet of the annular space formed by the coaxial
tubes (figure 1), also in plug flow. The total pressure was spe-
cified (1 atm) at the exit. The gas velocity was set equal to
zero on walls (no slip condition). Walls were considered to be
impermeable to gases. There was no change in species dens-
ity at the exit. The ambient air mass flow rate at the domain
boundaries LM and MN shown in figure 1 (middle panel) was
set proportional to that of the shielding gas mass flow rate
Qair = 0.03 QN2 [46].

2.2. Plasma dynamics model

The 2-D plasma dynamics model used the fluid approach,
based on the species continuity equations (equation (6)), with
the drift-diffusion approximation (equation (7)), the electron
energy conservation equation (equation (8)), and Poisson’s
equation (equation (9)) for the electrostatic field

∂ni
∂t

+∇·Γ i =
∑

j
Rij, (6)

Γ i = ZiniµiE−Di∇ni+ uni, (7)

∂(nε)
∂t

+∇· (−5
3
µeEnε −

5
3
De∇nε) =−Γ e ·E

−
∑
j

∆EjRinel,j− 3
me

M
kbneνen(Te −Tg), (8)

ε0∇· (εr∇Φ) =−
∑
i

Zini, (9)

where ni is the number density of species i, Rij is the rate of
production or loss of species i in reaction j, i is the total flux of
species i in the drift-diffusion approximation, is electric field,
µi is mobility, Di is diffusivity and Zi is the charge number
of species i (zero for neutral species). Electron mobility was
found by solving the Boltzmann equation (BOLSIG+[47])
in the two-term approximation. The electron diffusivity was
calculated using the Einstein relation De = µekbTe, where kb

is the Boltzmann constant, and Te is electron temperature,
assuming a Maxwellian electron energy distribution func-
tion. The ion diffusivity Dion was estimated by the Chapman–
Enskog theory, and the ion mobility, µion, was obtained from
the Einstein relation Dion = µionkbTg, where Tg is the gas
temperature.

In the electron energy conservation equation (8) nε =
3
2neTe is electron energy density. ∆Ej and Rinel,j are elec-
tron energy loss (or gain) due to inelastic collision, j, and the
corresponding reaction rate, respectively. The right-hand side
of the electron energy equation (8) includes Joule heating,
inelastic collisional energy exchange, and energy exchange of
electrons suffering elastic collisions with neutrals, whereme is
electronmass,M is heavy species mass, and ven is the electron-
neutral elastic collision frequency. In Poisson’s equation (9),
Φ is the electrostatic potential, ε0 is vacuum permittivity, and
εr is relative permittivity (unity for the gas phase and 4.5 for
quartz).

The boundary conditions for the plasma dynamics model
were similar to the corresponding boundary conditions in ref
[25]. The normal flux of particles (electrons, ions, metastables)
and the electron energy flux on walls were described by equa-
tions (10)–(13) below. The potential on dielectrics surfaces
was found using Gauss’ law, as in [25].

Γ e · n=
1
4
ne

√
8kbTe
πme

−αs
∑
i

γi(Γ i · n)+α ′
sµeneE, (10)

Γ i · n=
1
4
ni

√
8kbTi
πmi

+α ′
sµiniE, (11)

Γm · n= 2γm
2− γm

1
4
nm

√
8kbTg
πmm

, (12)

Γε · n=
1
2
nε

√
8kbTe
πme

−αs2kbTe
∑
i

γi(Γi · n), (13)

where γm is the probability of deactivation of metastables in
collisions with a wall (assumed unity), and αs and α′

s are
switching functions depending on the sign of the dot product
of E and n [25], where n is the unit vector normal to the sur-
face, pointing towards the surface.

2.3. Method of solution

The two equation systems were solved sequentially, in
a time-implicit manner, using the finite element method,
implemented in COMSOL [48]. The neutral gas convect-
ive mass and heat transport equations (1)–(4) were solved
first, using a standard non-linear solver based on a quasi-
Newton iteration scheme, to obtain the steady-state profiles
of gas velocity, temperature, and mass (mole) fractions of
helium, nitrogen, oxygen and argon. In turn, these profiles
were used as inputs to the plasma dynamics model. Equa-
tions (6)–(9) were solved using PARDISO, a time-dependent
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Figure 2. Helium mole fraction distribution without shielding gas (a), and with shielding gas (b). The vertical axis indicates axial position
in mm. The tip of the needle is at 1 mm. The horizontal axis is radial position in mm.

Figure 3. Profiles of the magnitude of gas velocity (color scale bar) without shielding gas (a), and with shielding gas (b). Arrows show the
velocity direction (not the magnitude). The vertical axis indicates axial position in mm. The tip of the needle is at 1 mm. The horizontal axis
is radial position in mm.
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Figure 4. Electron temperature (eV) distribution at positive peak voltage (a) (b), and negative peak voltage (c) (d), of the applied RF
waveform, without shielding gas (a) (c), and with shielding gas (b) (d). The vertical axis indicates axial position in mm. The tip of the
needle is at 1 mm. The horizontal axis is radial position in mm.

Figure 5. Electron density (log10 scale, 1 m−3) distribution at positive peak voltage (a) (b), and negative peak voltage (c) (d), of the applied
RF waveform, without shielding gas (a) (c), and with shielding gas (b) (d). The vertical axis indicates axial position in mm. The tip of the
needle is at 1 mm. The horizontal axis is radial position in mm.

solver, for tens of radio-frequency (RF) cycles, to obtain
electron density and electron temperature profiles as well as
the plasma species concentration profiles. Since the times-
cale of the neutral gas (ms) is much longer than that of
plasma dynamics (ns), this method of separation of the neut-
ral and plasma flows is valid. A similar approach was
followed by Breden and Raja [26]. In the present work, the
minimum finite element size of 1 µm was employed near the
needle electrode. A typical simulation involved about a mil-
lion degrees of freedom. In the next section, simulation pre-
dictions of APPJ characteristics with and without shielding
gas are reported and compared, side-by-side. Comparison with
experimental data obtained in our laboratory is also presented
and discussed.

3. Results and discussion

3.1. Properties of the neutral gas

Figure 2 shows the two-dimensional helium mole fraction dis-
tribution, with and without shielding gas, for the base case
conditions (He flow of 2 slm, N2 flow of 4.5 slm). Outlines
of the needle powered electrode, central tube, outer tube and
grounded electrode are also shown. Inside the central tube,
the mole fraction of helium is almost unity, since the Peclet
number (Pe = uL/D; u is average flow velocity, D is diffus-
ivity and L is characteristic length) Pe ∼ 2000 of the working
gas is high enough to prevent back diffusion of the shielding
or ambient gases into the central tube. Outside the central tube,
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Figure 6. Spatial distribution of the density (log10, 1 m−3) of He+, He+2 and N+
2 without shielding gas (a), (b), (c), and with shielding gas

(d), (e), and (f). The vertical axis indicates axial position in mm. The tip of the needle is at 1 mm. The horizontal axis is radial
position in mm.

shielding gas and ambient gas components diffuse into the
helium column, causing the helium mole fraction to decrease
gradually with axial distance from the nozzle and radial dis-
tance from the centerline. The locus of points where the He
mole fraction is 0.9 is shown as a black line superimposed
on the mole fraction distribution. Without shielding gas, the
intersection of the 0.9 helium mole fraction contour with
the system axis occurs about 7 mm from the nozzle (the
nozzle is at axial distance z = 3 mm), compared to about
5 mm from the nozzle in the case with nitrogen shielding
gas. This implies that more nitrogen invades the helium core
for the case of shielding gas. This is because the shielding
gas is 100% nitrogen, as opposed to 78% nitrogen without
shielding gas, and also, the shear at the interface between the
central and annular jets enhances the rate of mass transport.

Comparisons using different He mole fraction contours led to
the same conclusions. The helium mole fraction in the jet is
important for guiding the plasma plume. In fact, the plasma
plume was predicted to extend a longer distance from the
nozzle in the case without shielding gas (see below), and this
was verified by visual observations in our laboratory APPJ
reactor.

The magnitude (color scale bar) and direction (arrows) of
the gas velocity, for the base case conditions, are displayed in
figure 3. The red arrows show the direction of velocity (not
the magnitude). In the jet region, the velocity is highest in the
domain r < 1 mm where the core of the central jet is located.
The flow first accelerates as the entering helium gas is heated
by the needle. (due to the high thermal conductivity of the
metal, the temperature of the needle is uniform at 500K.) Then

9
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Figure 7. On-axis O2 number density as a function of distance from
the nozzle with and without shielding gas.

the helium velocity decreases, over a short axial distance, once
the flow has cleared the needle tip, and the cross sectional area
available for flow increases. (in fact there is a flow resirculation
zone over the needle tip that cannot be resolved in the scale of
the figure). The gas acccelerates again as it enters the region
of highest gas temperature near the nozzle (see section 3.3
below). The flow velocity goes through a maximum near the
nozzle, and decreases downstream as the jet is expanding and
the gas cools down. The shielding gas flow is almost parallel to
the helium core flow and sweeps the entrained ambient gases
downstream.

3.2. Plasma properties

In figure 4, the electron temperature distributions are displayed
at two phase angles of the applied RF voltage (at peak posit-
ive and peak negative voltage) with and without shielding gas.
The maximum electron temperature at a given phase does not
depend on the presence or absence of shielding gas since the
maximum occurs inside the central tube. The same holds true
for the electron density, shown in figure 5. The peak electron
density is of the order of 1019 m−3. The head of the plasma
plume is closer to the nozzle with shielding gas compared to
without shielding gas. This implies a shorter plasma plume
consistent with the 0.9 helium mole fraction contour being
closer to the nozzle, in the case with shielding gas (figure 2).
Furthermore, the electron temperature at the positive peak
voltage is higher compared to the negative peak voltage. The
maximum Te at positive peak voltage is near the dielectric
tube while the maximum Te at negative peak voltage is near
the needle tip (figure 4). Outside the tube, there are two rel-
atively high electron temperature regions, one in the mixing
layer and another in the head of the streamer, where the elec-
tric field is high.

The electron density is radially confined by a self-
developed radial electric field that prevents further out-
diffusion of electrons. Also, the electron density profile does
not change significantly when the phase of the RF cycle swings
from peak positive to peak negative voltage. At 13.7 MHz,
used in this work, helium ions have only a sluggish response

to the variations of the filed, i.e. the ion density in the bulk
is hardly modulated. Since the electron density in the bulk is
equal to the ion density to satisfy electro-neutrality electrons
are also hardly modulated in the RF cycle.

Figure 6 shows ion density profiles with and without shield-
ing gas. Inside the tube, He+2 and He+ are dominant ions
due to the gas being pure helium inside. In the mixing layer
He+2 is consumed by charge exchange with N2 (R89 and R90,
table 1). He+ is producedmainly by electron impact ionization
of ground-state He atoms (R3). He+ is converted to He+2 by
three-body reaction (R8). The density of He+ follows a sim-
ilar spatial profile as that of He+2 inside the tube. Outside the
tube, the He+ profile is different from that of He+2 . The He

+

number density outside the tube is lowered since He+ is lost
by charge exchange with N2 (R88) in the mixing layer, and
by reaction (R8) to produce He+2 in the center of the plasma
jet. At z = 8 mm on-axis, the He+ number density is about
3.2× 1016m−3, but at the same position the He+2 number dens-
ity is smaller. With shielding gas, the plume of helium ions
outside the tube is shorter compared to without shielding gas
as explained before. The presence of shielding gas has a minor
effect on the density profiles of the helium ions since these pro-
files develop upstream of the nozzle and are little influenced
by the gases outside the tube. The N+

2 mainly occurs in the
mixing layer outside the tube. TheN+

2 number density profile
near the nozzle is donut-shaped, but the donut hole shrinks
with increasing distance from the nozzle, only to disappear at
a distance of about 5.5 mm. With shielding gas, the N+

2 num-
ber density is much higher in the mixing layer than the case
without shielding gas.

In figure 7, the on-axis O2 number density increases with
distance from the nozzle, both with and without shielding gas.
The O2 density is lower in the presence of shielding gas, and
is vanishingly small up to a distance of 3 mm downstream of
the nozzle. Indeed, in the first few mm downstream of the
nozzle, the O2 density is determined by the oxygen impur-
ity in the helium gas feed. With increasing distance from the
nozzle, there is widening of the difference of O2 number dens-
ity without shielding gas compared to that with shielding gas.
In any case, the O2 density with shielding gas is several times
lower than without shielding gas. Very similar behavior to that
shown in figure 7 has been reported by Reuter et al [8].

3.3. Gas temperature distribution

To facilitate the imposition of boundary conditions on the
equation of convective heat transport (equation (4)), both the
inner and outer tube as well as the needle, were extended
10 mm upstream of the nozzle as shown in figure 1 (middle
panel), so that the feed gases could be assumed to enter at
300 K at the extended inlets. The needle was assumed iso-
thermal due to the high thermal conductivity of the metal. The
needle temperature was taken to be 500 K, as measured exper-
imentally with a thermocouple. The power deposited by the
plasma into the gas was taken to be 16.5W, found by matching
the temperatures predicted by the simulation with the meas-
ured gas temperatures, 5 mm from the nozzle and at radial
position of 1 mm, with shielding gas (825 K) and without
shielding gas (1000 K, figure 8).
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Figure 8. Predicted radial distribution of gas temperature at several distances from the nozzle, without shielding gas (left) and with
shielding gas (right). The model predictions of gas temperature were matched to the experimentally obtained temperatures at two points
(5 mm from nozzle at a radial position of 1 mm) as shown. Base case conditions.

Figure 9. Gas temperature distribution without shielding gas (left) and with shielding gas (right), for the base case conditions. The vertical
axis indicates axial position in mm. The tip of the needle is at 1 mm. The horizontal axis is radial position in mm.

Figure 10. Gas temperature distribution for a helium flow rate of 1 slm without shielding gas. For the left panel, the vertical axis indicates
axial position in mm. The tip of the needle is at 1 mm. The horizontal axis is radial position in mm.
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Figure 11. Gas temperature distribution for a helium flow rate of 5 slm, without shielding gas. For the left panel, the vertical axis indicates
axial position in mm. The tip of the needle is at 1 mm. The horizontal axis is radial position in mm.

Figure 9 shows the gas temperature distribution with and
without shielding gas, for the base case conditions. Without
shielding gas, the temperature peaks on-axis, and has a max-
imum value of 1220 K, at an axial distance of 1 mm from
the nozzle. In general, the temperature decreases both axially
and radially. The radial profile becomes more uniform with
increasing distance downstream aided by the high thermal con-
ductivity of helium. With shielding gas, the temperature also
peaks on axis but the radial extend of the high temperature
zone shrinks due to the cooling effect of the shielding gas.
Figure 8 shows that the temperature profiles within a radial
distance of about 0.8 mm are similar with or without shielding
gas. Beyond 0.8 mm, the temperature profiles with shielding
gas vary over a much tighter range and sustain much sharper
gradients, again due to the cooling effect of the shielding gas.

For a helium flow rate of 1 slm (figure 10), the high-
temperature zone is partly inside the central tube and the
maximum temperature is about 1380 K at the distance
1 mm from the nozzle. With 2 slm helium flow (figure 9),
the maximum temperature decreases to about 1220 K. By
increasing the helium flow rate to 5 slm, the gas temperat-
ure decreases drastically, especially inside the tube; and the
high-temperature zone becomes very slim. The decrease of
maximum temperature with increasing flow rate is due to con-
vective cooling of the gas (heat removal by the flow). Figure 11
shows that the on-axis temperature ranges from 660 K at an
axial distance of 1 mm from the nozzle to 750 K at an axial
distance of 3 mm from the nozzle. Interestingly, in this case,
the on-axis temperature increases over a range of axial dis-
tances from the nozzle, due to the highly convective nature of
the flow. The significant effect of flow on gas temperature in
an atmospheric pressure microplasma was discussed by Wang
et al [49].

Figure 12 shows the predicted radial profiles of the mole
fractions of N2, O2 and Ar at three axial positions in the jet
(1 mm, 3 mm, and 5 mm from the nozzle). The case of no
shielding gas (left column panels a, b, c) is compared to that

with shielding gas (right column, panels d, e, f). Themole frac-
tions of O2 and Ar are quite low, especially in the presence
of the shielding gas, and close to the nozzle where the con-
vective flow of the working gas does not allow any back
diffusion of gases. For all three axial locations, the N2 mole
fraction increases, while the mole fractions of O2 and Ar both
decrease with the nitrogen shielding gas on. At axial position
of 3 mm from the nozzle, the on-axis O2 and Ar mole fractions
decrease from 3.9× 10−4 to 6.8× 10−5 and from 1.9× 10−5

to 3.3× 10−6, respectively, in the presence of shielding gas.
The radial profiles dip on axis and increase monotonically as
a function of radius, more so closer to the nozzle. The radial
gradients are severe at 1 mm from the nozzle (note log scale),
but the profiles tend to flatten out with increasing distance from
the nozzle, as the exposure time increases. The Ar mole frac-
tion at 1 mm from the nozzle is less than 10–7 for radii smaller
than 0.2 mm (figure 12(d)). The mole fractions of argon and
molecular oxygen are so low near the nozzle (especially with
the shielding gas on) that the mole fraction of these gases in
practical systems may be determined by impurities in the He
feed gas. A rather comprehensive comparison between simu-
lation predictions with experimental measurements of species
(O2, N2 ad Ar) mole fraction radial profiles, at several axial
distances from the nozzle, with and without shielding gas, is
presented in [50].

3.4. Comparison with experimental data

An APPJ reactor in our laboratory was employed to test simu-
lation predictions against experimental measurements, under
identical geometric and operating conditions. The species
mole fraction was measured using optical emission spectro-
scopy combined with a technique called self-actinometry [50].
Figure 13 shows the on-axis mole fraction of O2, N2 and Ar
at three distinct axial distances from the nozzle. The nitrogen
mole fraction 1 mm from the nozzle was exceedingly low, so
the corresponding experimental point is missing. For all
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Figure 12. Predicted radial profiles of the mole fraction of N2, O2 and Ar at three axial positions in the jet (1 mm, 3 mm, and 5 mm from
the nozzle). The case of no shielding gas (left column a, b, c) is compared to that with shielding gas (right column, d, e, f).

three species, the simulation results are in reasonable agree-
ment with the experimental data at 3 mm distance from the
nozzle. At 1 mm from the nozzle, the Ar mole fraction is pre-
dicted to be several times lower than the experimental value,
because at this location the minority species mole fraction is
determined by the impurities of the helium feed gas, and such
impurities were not included in the simulation. At 3 mm and
5 mm from the nozzle, the air species have diffused enough
into the jet to overpower the density of impurities. At 5mm, the
agreement is reasonable, except for O2, whose mole fraction

is predicted to be several times higher than the experimental
value. In addition, for all three species, the mole fraction ratio
between 3 mm and 1 mm from the nozzle is much higher than
the ratio between 5 mm and 3 mm from the nozzle. Overall,
the simulation captures the salient features of the experimental
measurements.

In figure 14, the measured intensity of the helium excited
state (He 33S), emitting at 706 nm, is found by Abel invert-
ing line-integrated experimental data and compared with sim-
ulation predictions as a function of radius. Quenching of the
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Figure 13. Comparison between simulation predictions with
experimental data (points) of the on-axis mole fraction of O2, N2

and Ar without shielding gas. The simulation values at the three
axial locations are shown connected with straight lines.
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Figure 14. Radial distribution of light intensity of He excited state
(emitting at 706 nm) under base case conditions, for three axial
distances from the nozzle. Simulation predictions (lines) are
compared to experimental data (points).

excited state in collisions with oxygen and nitrogen was taken
into account. The rate coefficient for quenching by nitrogen at
600 K is 5× 10−10 cm3 s−1 [51, 52]. The inverse of the natural
lifetime [53] of the excited state 1/τ 0 is 2.63 × 107 s−1. The
rate coefficient for quenching by oxygen was assumed to be
the same as that by nitrogen. The equations used to calculate

the emission intensity were,

K(Te) =

√
2
me

∞̂

0

σ (ε) f(ε)εdε, f(ε) =
2√
π

exp
(
− ε

kTe

)
(kTe)

3/2

(14)

kq (Tg) = kq (Tr)

√
Tg
Tr

(15)

R= KnenHe (16)

I ∼
τ−1
0

τ−1
R (17)

τ−1 = τ−1
0 + kqN2nN2 + kqO2nO2 [52] (18)

where K(Te) is the excitation rate coefficient (a function of
electron temperature), and ε is the electron energy. A Max-
wellian EEDF is assumed in equation (14); Tr is a reference
temperature for quenching rate coefficient kq, R is the elec-
tron impact excitation rate to the He 33S state, I is the calcu-
lated emission intensity; τ and τ0 are species effective lifetime
and natural lifetime, respectively. Finally, kqN2 and kqO2 are the
quenching rate coefficients for N2 and O2, respectively. The
emission intensity was calculated from equation (17) using the
electron density and temperature as well as the densities of N2

and O2 found by the simulation.
Figure 14 shows that, in both simulation and experi-

ments, the emission intensity peaks on axis and decreases
monotonically along the radius of the plasma jet. Also, the
on-axis intensity decreases by more than an order of mag-
nitude in going from 1 mm to 3 mm from the nozzle. As seen
in figures 4 and 5, the on-axis electron density and temperat-
ure do not change significantly in going from axial position
z= 4 mm (1 mm from the nozzle) to z= 6 mm (3 mm from the
nozzle). Thus, the dramatic fall in emission intensity between
1 mm and 3 mm from the nozzle must be attributed to quench-
ing of the excited state as the oxygen and nitrogen mole frac-
tions increase drastically from 1 mm to 3 mm (figure 12). The
simulated intensity falls off faster than the measurements at
large radii. This may be due to overestimation of the quench-
ing of the excited state by nitrogen and oxygen. Nevertheless,
the main features of the experimental data are again captured
by the simulation.

4. Summary and conclusions

A two-dimensional (r, z) numerical simulation of a non-
equilibrium APPJ in helium, with co-axial nitrogen shield-
ing gas was performed. The shielding gas provided a curtain
hindering penetration of the ambient gas (here dry air 78%N2-
21%O2-1%Ar) into the helium jet. A neutral gas convective
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mass and heat transport model was combined with a fluid
plasma dynamics model to predict the APPJ discharge char-
acteristics. Results for an APPJ with nitrogen shielding gas
were compared to an otherwise identical APPJ without shield-
ing gas. Furthermore, simulation predictions of ambient spe-
cies mole fractions in the jet, and optical emission intensity
profiles of the He 33S excited state, were compared to experi-
mental measurements in an APPJ in our laboratory.

The presence of nitrogen shielding gas resulted in a concen-
tration of ambient species (oxygen and argon) in the core of
the jet several times lower compared to the case of no shield-
ing gas. For the base case (He flow of 2 slm), switching on
the N2 shielding gas flow (at 4.5 slm) reduced the on-axis O2

and Armole fractions from 3.9× 10−4 to 6.8× 10−5 and from
1.9× 10−5 to 3.3× 10−6, respectively, at an axial distance of
3 mm from the nozzle. In addition, in the presence of shield-
ing gas, N2 penetrated deeper into the helium jet, leading to
a shorter plasma plume beyond the nozzle, in agreement with
experimental observations. The ambient species mole fraction
radial profiles were center-low for short axial distances from
the nozzle (∼1 mm), but became progressively flatter at longer
distances from the nozzle. Increasing the He working gas flow
rate resulted in lower gas temperature. The maximum temper-
ature occurred a small distance from the nozzle (depending on
flow rate) and decreased from∼1400 K for 1 slm, to∼1200 K
for 2 slm, to ∼800 K for 5 slm of He flow through the central
tube of the co-axial configuration. In the presence of shield-
ing gas, the radial extend of the high gas temperature zone
was significantly reduced, but the maximum temperature was
mostly unaffected. Simulation predictions captured the sali-
ent features of experimental measurements of ambient species
mole fraction in the jet, and optical emission (706 nm) intens-
ity profiles of the He 33S excited state.
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