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a b s t r a c t

Although natural gas is widely produced from shale, the mechanisms of natural gas transport in shale
matrices remain poorly understood due to the complex chemical compounds of the matrices and the
nanoscale pore size distribution. Using molecular simulations, we investigate natural gas transport and
storage in nano-pore networks. Carbon-based 3-D pore networks are generated from 2-D scanning
electron microscopy (SEM) images of a shale rock using the Markov Chain Monte Carlo simulation
method. We employ a grand canonical Monte Carlo (GCMC) simulation to calculate adsorption isotherms
of natural gas in carbon-based 3-D pore networks, which can be fit by a Langmuir isotherm model. To
investigate gas transport in the same structures, we insert an external driving force into non-equilibrium
molecular dynamics (NEMD) simulations and find that Knudsen diffusion is the dominant transport
mechanism in the pore networks. Although porosity and pore connectivity affect the natural gas diffu-
sion in the pore networks, we typically observe a linear relationship between average molar flow rate
through a cross-sectional area and the external driving force.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

As conventional hydrocarbon resources are rapidly being de-
pleted, shale gas has become increasingly important as a strategic
energy supply for US energy independence and security (Ambrose
et al., 2010; Civan, 2010; Collell et al., 2014; Darabi et al., 2012;
Fathi et al., 2013; Javadpour, 2009; Mosher et al., 2013; Swami and
Settari, 2012; Yiannourakou et al., 2013; Yuan et al., 2014). Shale
gas is natural gas trapped in fine-grained sedimentary rock for-
mations, which are usually characterized as anisotropic and het-
erogeneous porous media with very small pores. Consequently, the
permeability of shale formations is extremely low and is typically
of the order of magnitude of one hundred nanodarcies (Sakhaee-
Pour and Bryant, 2012). The ultra-low permeability of shale for-
mations presents a significant challenge in the production of shale
gas in an economically viable fashion. Although horizontal drilling
and multi-stage hydraulic fracturing stimulation make commercial
shale gas production possible, the underlying mechanisms of gas
transport in these highly confined media remain unclear and need
to be fully understood for optimal production performance and
reserve estimation (Collell et al., 2014). Several limitations about
the current shale gas reservoir simulator and further research and
development efforts have been reviewed in Andrade’s work
(Andrade et al., 2011).
There are two main challenges in identifying the underlying

mechanisms of gas transport in shale reservoirs. First, petrophy-
sical studies indicate that more than 60% of the pores in shale
formations are micropores with a characteristic length scale of less
than 30 nm (Darabi et al., 2012; Mosher et al., 2013). At this scale,
the mean free path λ of fluid molecules becomes comparable to
the characteristic length L of the flow channel. As one con-
sequence, Darcy's equation (v k P/μ= − ( )∇ , where v is the mean
fluid velocity, P∇ is the gradient of the pressure, k is the perme-
ability, and m is the viscosity) cannot accurately describe transport
at this scale because the continuum theory breaks down when the
Knudsen number Kn L/λ= exceeds 0.1 (Roy et al., 2003). Therefore,
accurate descriptions of gas transport through nanoscale pores
require experimental and/or numerical studies at these length
scales. Second, besides the nanoscale pore size, shale matrices
consist of various types of kerogen, clays, and other minerals that
exhibit differences in porosity, tortuosity, and pore size distribu-
tion. Describing the intermolecular interaction between gas and
boundary molecules in these heterogeneous pores, which heavily
influences gas storage and transport behaviors, remains a sig-
nificant challenge both experimentally and computationally.
Methods to generate understanding of gas flow and storage me-
chanisms at the molecular level must address these challenges and
are required to enhance shale gas production performance.

Towards this end, several recent studies have investigated gas
storage and transport mechanisms in micropores using simple
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Fig. 1. Schematic illustration of the MCMC neighborhoods algorithm. (a) The 1-D
2-neighbor condition for updating voxel (i, j) based on (i, j�1). (b) The 2-D 5- and
6- neighbor conditions for updating two voxels (i, j) and (i, jþ1) simultaneously.
(c) The 3-D 11- and 12- neighbor conditions for updating two voxels (i, j, k) and (i,
jþ1, k) simultaneously. From the initial point (i¼1, j¼1, k¼1), the voxels in the first
row are conditionally determined by the 1-D neighbors. Next, voxels in the same
plane (i, j, k¼1) are conditionally determined by the 2-D neighbors, and the re-
maining voxels are determined by the 3-D neighbors.
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geometries and microporous model materials. Experimental
measurements of high-pressure methane adsorption isotherms in
porous media have been widely reported (Heller and Zoback,
2014; Ji et al., 2012; Rexer et al., 2014; Zhang et al., 2012). Nu-
merically, sophisticated molecule structures (Katti et al., 2014;
Zheng et al., 2014) and simple organic carbon molecule structures
(Ambrose et al., 2010; Mosher et al., 2013) have been developed to
replace kerogen molecules to investigate gas adsorption. Both
experiments and simulations show that the adsorption obeys the
Langmuir isotherm and that the adsorption capacity is associated
with total organic carbon (TOC), organic matter type, thermal
maturity, and clay minerals content (Heller and Zoback, 2014;
Rexer et al., 2014; Zhang et al., 2012).

A variety of studies show that transport in nanoporous media
exhibits a variety of non-continuum features. Experiments de-
monstrate that fluid flow in carbon nanotubes differs from that
predicted based on continuum hydrodynamics models, such as the
Hagen–Poiseuille equation (Majumder et al., 2005). Similarly, the
experimentally measured flow rate of water and air through na-
noscale pores is measured to be several orders of magnitude faster
than that predicted using continuum theory (Holt et al., 2006).
Furthermore, slip boundary conditions in nanotube and planar
flow have been widely reported (Chen et al., 2008; Kannam et al.,
2011; Thomas and McGaughey, 2009). Finally, Knudsen diffusion
and free molecular diffusion dominate flow mechanisms in na-
nochannels and nanotubes (Roy et al., 2003). As a complement to
experimental studies, molecular simulation techniques, including
dual control volume grand canonical molecular dynamics (DCV-
GCMD) simulations (Boţan et al., 2013) and non-equilibrium mo-
lecular dynamics (NEMD) simulations (Wang et al., 2013, 2012),
are widely employed to simulate permeation experiments. As one
example, a computational study of gas transport in models of
graphite-like 3-D porous materials shows that the porosity (ϕ),
the ratio of the pore volume to the total volume of the rock,
strongly affects permeability, with the lack of pore connectivity
hindering gas transport at porosities of less than 0.2 (Firouzi and
Wilcox, 2012).

Although these and other studies of simple geometries and
microporous materials have provided fundamental insights into
the mechanisms of fluid storage and transport in microscopic
systems, they do not adequately capture the complexity or het-
erogeneity of shale gas matrices. These simplified models recreate
neither the complex chemical composition (kerogen, clay, quartz,
etc.) nor the complex pore connectivity found in shale. To generate
more realistic models of natural shale, digital rock reconstruction
(Wang and Pan, 2008), widely used in conventional reservoir
modeling, can be used to recreate the detailed pore structure.

Generally, pore reconstruction techniques are necessary when
3D images with the required resolution are not easily acquired.
Commonly used reconstruction methods can be divided into two
classes. The first is the apparent-similarity method, which neglects
the details of particle geometry and instead considers macroscopic
properties (Li et al., 2005; Wang and Pan, 2008; Yang et al., 1996).
An alternative method, digital rock reconstruction, focuses on the
geometric details and aims to build more realistic structures by
exploiting improvements in microscope instrumentation and in
image mapping technology. In this technique, rock sections ob-
tained by scanning microscopy methods, such as computed to-
mography (CT) or scanning electron microscopy (SEM), are digi-
tally reconstructed. The detailed pore structure (porosity and
connectivity) is recreated in the computational model. One algo-
rithm commonly used in petroleum engineering and earth science
research is the Markov Chain Monte Carlo (Wu et al., 2006, 2004)
(MCMC) simulation, which recreates the 3-D microstructure based
on thin 2-D images of rock samples obtained using SEM. Con-
tinuum fluid transport mechanisms have been widely studied in
digital rock reconstructions (Boek and Venturoli, 2010; Manwart
et al., 2002). By contrast, only few studies have investigated
transport mechanisms in the non-continuum flow regime in di-
gital rock reconstructions, despite the increased complexity and
verisimilitude of these models (Boţan et al., 2015). Studies of non-
continuum transport in digital rock reconstructions are therefore
expected to generate new insight into the transport mechanisms
operating in nanoporous natural shale.

In this paper, we combine digital rock reconstruction and mo-
lecular simulation to investigate gas transport and storage and
fluid–boundary molecular interactions in models of nanoporous
shale matrices. In Section 2, we describe digital rock sample and
simulation methods. We use an established method for 3-D pore
network reconstruction, the Markov Chain Monte Carlo (MCMC)
algorithm, to generate digital rock samples from 2-D SEM images
of shale samples taken from the low Silurian Marine formation. To
elucidate storage mechanisms, we use grand canonical Monte
Carlo (GCMC) simulations to predict adsorption isotherms in car-
bon-based nanopore networks. To study gas transport, we perform
NEMD simulations by inserting different external body force va-
lues in the system and subsequently correlate the average molar
flow rate through the cross-sectional area to the external driving
force. In Section 3, we discuss results for the adsorption isotherms
and for gas transport. We find that the adsorption data can be fit
by the Langmuir isotherm model and that Knudsen diffusion is the
dominant transport mechanism. Conclusions and future work are
discussed in Section 4.
2. Simulation methods

2.1. Pore structure construction method: MCMC algorithm

The MCMC method is used to model the spatially anisotropic
and heterogeneous structure of multi-phase media (matrix, pore,
etc.) based on 2-D thin section information (Wu et al., 2004). As
shown in Fig. 1, the state of each particular voxel (xijk) is assigned a
value of 0 or 1, corresponding to pore or rock, respectively, and is



Fig. 2. (a) Scanning electron micrograph of shale organic matter. (b) Two-value reconstruction of the SEM image in (a), in which values of 0 and 1 correspond to pore and
rock voxels, respectively.

Fig. 3. Pore size distribution and cumulative pore size distribution of the 3-D di-
gital rock. The cumulative pore size distribution is the probability that radii of pores
are smaller than a given equivalent radius.

Table 1
Porosities and surface areas in three pore networks generated from the digital rock
image.

Sample Porosity (%) Surface area (nm2)

1 16.7 (100/600) 322
2 25.0 (150/600) 476
3 39.2 (235/600) 640
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conditionally dependent on the states of its neighboring voxels N(i,
j, k). The neighborhood N(i, j, k) in the MCMC method, a new
feature compared to previous methods (Geman and Geman, 1984),
depends on the spatial dimensionality: N(i, j, k) contains 2 neigh-
bors in 1-D, 5 or 6 neighbors in 2-D, and 11, 12, or 15 neighbors in
3-D that are prior to the current position xijk. The key advantage of
the MCMC method is that, from some initial position (i¼1, j¼1,
k¼1), the state of the remaining voxels only depends on the states
of neighboring voxels that are previously determined; therefore,
the MCMC method avoids iterative computation and speeds up the
simulation procedure. The dependence of the target voxel on its
neighbor is described by the conditional probability distribution,
that is, P x x l m n N i j k: , , , ,ijk lmn( )( ) ∈ ( ) . After the conditional
probabilities of a specific voxel (i,j,k) are calculated, a Monte Carlo
simulation is used to sample the state of this voxel from its cor-
responding conditional probability distribution.

In our work, shale core samples are taken from the Longmaxi
Formation that is a low Silurian marine formation in the Sichuan
Basin, South China at depths of 6279–6385 ft. High resolution 2-D
images of the shale rock samples are collected using SEM (Hitachi
S-4800 Field Scanning Electron Microscope, Fig. 2a) and processed
to form a binary microstructural data matrix (Fig. 2b) in which a
digital pixel has an area of 1 nm�1 nm.

From this data matrix, the transition probabilities between
different neighbors (1-D and 2-D neighbors) are collected and
stored by sampling 2-D neighborhoods and enumerating the dif-
ferent realizations for each configuration of the neighborhood (Wu
et al., 2004). Next, the 3-D transition probability is obtained based
on the 2-D transition probability. The probability that the first
voxel (i¼1, j¼1, k¼1) is a pore is taken as the porosity in the SEM
image, that is, the ratio of the number of pore pixels to the total
number of pixels. Starting from the first voxel, a total of 64 million
voxels (400�400�400 voxels) are sampled sequentially using a
Monte Carlo simulation. Following Zhao's method (Yao et al., 2013;
Zhao et al., 2006), the average pore size distribution is shown in
Fig. 3. Most pores have diameters of several nanometers, and the
mean pore size is 2.35 nm.

2.2. Pore networks sampling and molecular structure
implementation

Three different pore networks with different porosities are
extracted from one reconstructed digital rock based on the MCMC
algorithm and are used in molecular simulations. Each pore
structure consists of 600¼10�10�6 (x, y, z) connected voxels.
The porosities of the three porous media are taken as the ratio of
the number of the pore voxels to the total number of voxels in
each structure. The surface area is taken as the number of pore–
solid interfaces. Periodic boundary conditions are used in the de-
termination of the surface area. Table 1 shows the porosities and
surface areas in the three pore networks.

After the value of each voxel (0 or 1) in the pore networks is
generated using the MCMC method, molecular structures are in-
serted into the pore network. In pore voxels, we insert methane
molecules to represent natural gas. In rock voxels, we model the
effect of organic matter by inserting a related molecular structure.
A major constituent of the organic matter found in sedimentary
rocks is kerogen, a mixture of high molecular weight organic
compounds, which can exhibit a wide variety of compositions
depending on the source shale formation (Collell et al., 2014;
Heller and Zoback, 2014; Orendt et al., 2013) and therefore cannot
be readily represented with one (or even a few) molecular struc-
ture(s). Instead, as the initial test of our new hybrid simulation
approach, we replace the rock voxels with simple center cubic



Table 2
Lennard-Jones interaction parameters used in simulation calculations (Mosher
et al., 2013).

LJ intermolecular potential ε (Kcal/mol) s (nm)

Methane–methane 0.294 0.373
Carbon–carbon 0.056 0.3405
Methane–carbon 0.128 0.3567

Fig. 4. Schematic illustrating the cross-sectional structure of a complex pore net-
work perpendicular to the x-direction (the direction of flow). Gray and white re-
present rock and pore voxels, respectively.
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(SCC) carbon structures because carbon atoms play a significant
role in the interactions between gas and solid molecules in shale
formations. In our study, the length of a voxel is 1 nm in each
direction (x, y, z); the molecular diameter of carbon is 0.34 nm. We
therefore insert 27¼3�3�3 (x, y, z) carbon atoms in each rock
voxel to represent the organic carbon structure. Methane cannot
penetrate the carbon-filled rock voxels and only transports
through pore voxels. Depending on the number of rock voxels in
each pore network, 13,500, 12,150, and 9855 carbon atoms are
inserted.

Methane and carbon atoms are assumed to act as hard spheres
and are represented using cut-off Lennard-Jones (LJ) inter-
molecular potentials; the interactions are characterized by the
effective LJ size and energy parameters, s and ε, respectively. The
methane–carbon interaction is modeled by taking the average of
the two interactions based on the Lorentz–Berthelot mixing rule
(Mosher et al., 2013). The parameters used in the simulations are
shown in Table 2.

The cut-off Lennard-Jones potential is given by
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Here, r is the distance between the interacting pair and rc is the
cut-off distance. The cut-off distances of carbon and methane
molecules are set as rc¼12 Å. Because the methane has a relatively
weak octupole moment (Martin and Siepmann, 1998), it is treated
as a one-center Lennard-Jones sphere; neither long-range inter-
actions nor electrostatic forces were included in this simulation.

2.3. Molecular simulation setup

To study the gas storage mechanism, we use a Monte Carlo
simulation with a grand canonical ensemble, in which tempera-
ture (T), volume (V), and chemical potential (m) are held constant.
In this simulation, carbon-based pore networks interact with an
ideal gas reservoir with a specific chemical potential. Methane
molecules in the gas reservoir are adsorbed in the porous media
until equilibrium is obtained. The carbon atoms representing rock
voxels are constrained at their initial position by adding a har-
monic attractor. Periodic boundary conditions are applied in all
three directions, and the porous medium initially contains no
methane molecules. Simulation trial moves consist of molecular
displacement, molecule insertion, and deletion. In total, Monte
Carlo simulations consisting of approximately one million moves
at each of six different temperatures ranging from 300–420 K are
carried out. We count the number of methane molecules adsorbed
in the carbon-based pore network when the system reaches
equilibrium as a function of the chemical potential. The relation-
ship between the chemical potential and the gas pressure in the
gas reservoir is given by
⎛
⎝⎜

⎞
⎠⎟k

T
P
kT

ln
3

3μ Λ=
( )

where k is Boltzmann's constant, T is the temperature, P is the
pressure, and Λ is the thermal de Broglie wavelength. A MCCCS
(Monte Carlo for Complex Chemical Systems) Towhee molecular
simulator is used for the simulation process.

To investigate methane transport behavior in the porous net-
work, non-equilibrium molecular dynamics simulations with dif-
ferent external driving forces are carried out. Two methane mo-
lecules are inserted into each pore voxel so that the molar density
nv is initially constant (two molecules/nm3) in each pore network.

At this nv, the mean-free path d n2 v
2 1( )λ π=

−
, calculated from

kinetic theory (Chapman and Cowling, 1970) using the molecular
diameter of methane d¼0.373 nm and a pore voxel volume of
(1 nm)3, is λE0.8 nm. We take the characteristic length scale as
the mean pore diameter, L¼4.70 nm, and calculate a Knudsen
number Kn¼λ/L¼0.2. Because Kn40.1, the flow is in the non-
continuous regime.

To initialize the sample, we perform an equilibrium molecular
dynamics simulation with a constant NVT ensemble (i.e., in the
canonical ensemble). The temperature is set at 300 K and is con-
trolled by the Berendsen thermostat (Berendsen et al., 1984) al-
gorithm with a time scale parameter of 100 fs. The duration of the
initial run is approximately 10 ps with a time step of 1 fs. After the
initial run, an energetic minimization process is applied by itera-
tively adjusting the atomic coordinates to reach the local energetic
minimum. Next, a non-equilibrium molecular dynamics simula-
tion is carried out by inserting an external body force in the x-
direction using the Varlet integration algorithm in an NVT
(T¼300 K) ensemble coupled with the Nose–Hoover thermostat
algorithm (Frenkel and Smit, 2002). The relaxation time in the
Nose–Hoover algorithm is set at 100 s. The time step is selected as
1 fs, and the total simulation time for each run is 80–100 ps. All
MD simulations are performed using LAMMPS (a large-scale
atomic/molecular massively parallel simulator) (Plimpton, 1995).

2.4. Flow rate calculations

In complex pore networks, we calculate the relationship be-
tween the external body force and the total molar flow rate
through a cross-sectional layer. Fig. 4 illustrates a single cross-
sectional layer perpendicular to the flow (positive x) direction.

The molar flow rate through the ith pore voxel MFi is given by



Table 3
Langmuir parameters of methane adsorbed in the three pore networks at 300 K,
obtained from a fit to the Langmuir isotherm equation.

Sample Porosity ϕ

(%)
Surface area
(nm2)

Nmax (mmol/g)a K (�10�3, MPa�1)b

1 16.7 322 7.69 [7.52, 7.86] 38.03 [35.31, 40.75]
2 25.0 476 12.92 [12.66, 13.18] 36.54 [34.20, 38.89]
3 39.2 640 25.58 [24.90, 26.25] 36.34 [33.31, 39.38]

a Brackets indicate the 95% confidence interval for each fitting parameter, (Nmax

and K).
b The Langmuir equation has the form N N KP KP/ / 1max = ( + ), where N and P

represent the absolute adsorption amount and pressure, respectively.

Table 4
Comparison of the adsorption capacities of the three pore networks at a tem-
perature of 300 K.
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where ρ represents the molar density, Apore is the cross-sectional
area of a voxel, Vpore is the volume of a voxel, and Lpore¼Vpore/Apore

is the length of the voxel. The mean velocity in the x-direction vxi

is calculated as the average of all molecular velocities in the x-
direction vxj. Ni represents the number of methane molecules in
each pore voxel. By summing all molar flow rates in each pore
voxel in the cross-sectional layer, the total molar flow rate MF
through a given cross-section is calculated as
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where Np represents the number of pore voxels in each cross-
sectional layer.
Sample ϕ (%) Surface
area (nm2)

Nmax

(mmol/g)
Nmax/ϕa

(mmol/g)
Nmax/SAb (mmol/(g nm2))

1 16.7 322 7.69 46.13 23.88
2 25.0 476 12.92 51.68 27.14
3 39.2 640 25.58 65.31 39.97

a Nmax/ϕ: the ratio of maximum adsorption amount to the porosity of each pore
network.

b Nmax/SA: the ratio of maximum adsorption amount to the surface area.
3. Results and discussion

3.1. Adsorption isotherms in pore networks

The adsorption isotherms of methane in the three pore net-
works at a temperature of 300 K are of the Langmuir type, as
shown in Fig. 5. The amount of adsorbed gas increases with
pressure at low pressures less than 100 MPa and approaches a
maximum adsorption at higher pressures. We fit the isotherms in
Fig. 5 using the Langmuir isotherm equation, N N KP KP/ / 1max = ( + ),
and extract two parameters, Nmax and K, as reported in Table 3.

K is the adsorption equilibrium constant, which is related to the
changes in energy during the adsorption process. We find that the
values of K are similar for all three networks. In our model, carbon
atoms are used to replace organic matter, and the carbon–me-
thane interaction is independent of the geometric details of the
pore networks; we therefore expect that K should not depend
strongly on porosity or connectivity. Nmax represents the max-
imum adsorption capacity for each pore network. We find that
Nmax monotonically increases with increasing porosity and/or
surface area, but the dependence of Nmax on these parameters is
not linear (Table 4). This finding indicates that the gas storage
mechanism is complex and may depend on multiple geometrical
properties of the pore network.

Adsorption isotherms of methane in the three pore networks at
Fig. 5. Adsorption isotherms of three pore networks at T¼300 K. ϕ indicates the
porosity of the pore network.

Fig. 6. Adsorption isotherms of methane in three pore networks at temperatures
ranging from 300–420 K.
six different temperatures are shown in Fig. 6, and the Langmuir
parameters obtained from fits for all networks are shown in Ta-
ble 5. At fixed pressure, the absolute adsorption monotonically
decreases as the temperature increases. We find that Nmax is nearly
independent of temperature, whereas K decreases as the tem-
perature increases. Because Nmax is related only to the total
number of active sites on the carbon surface, it should not vary
with temperature. K, the adsorption equilibrium constant, is the
ratio of the rate constant of adsorption to the rate constant of
desorption (Atkins and de Paula, 2006). As the temperature is
increased, more adsorbed gas will desorb from sites and free
methane molecules will have more difficulty attaching on the
carbon surface. This argument suggests that as the temperature is
increased the rate of adsorption decreases while the rate of des-
orption increases, leading to a decrease in the equilibrium con-
stant K.

The dependence of the equilibrium constant on temperature is
described by the van't Holf equation (Atkins and de Paula, 2006),



Table 5
Langmuir parameters of the three pore networks, obtained at different temperatures with 95% confidence intervals.

Samplea Temp. (K) 300 315 330

1 Nmax (mmol/g) 7.688 [7.516, 7.859] 7.625 [7.464, 7.787] 7.636 [7.488, 7.784]
K (�10�3, MPa�1) 38.03 [35.31, 40.75] 33.54 [31.34, 35.74] 30.15 [28.39, 31.91]

2 Nmax (mmol/g) 12.92 [12.66, 13.18] 12.83 [12.53, 13.13] 12.49 [12.25, 12.73]
K (�10�3, MPa�1) 36.54 [34.20, 38.89] 32.21 [29.90, 34.51] 30.47 [28.68, 32.25]

3 Nmax (mmol/g) 25.58 [24.90, 26.25] 25.43 [24.79, 26.06] 25.45 [24.94, 25.96]
K (�10�3, MPa�1) 36.34 [33.31, 39.38] 31.97 [29.53, 34.41] 28.38 [26.70, 30.07]

Sample Temp. (K) 360 390 420
1 Nmax (mmol/g) 7.545 [7.362, 7.728] 7.302 [6.835, 7.769] 7.345 [7.183, 7.508]

K (�10�3, MPa�1) 25.27 [23.51, 27.03] 23.27 [19.09, 27.44] 18.73 [17.64, 19.82]
2 Nmax (mmol/g) 12.49 [12.29, 12.69] 12.38 [12.22, 12.55] 11.91 [11.44, 12.37]

K (�10�3, MPa�1) 24.15 [23.06, 25.24] 20.88 [20.14, 21.62] 18.48 [16.59, 20.37]
3 Nmax (mmol/g) 24.80 [24.35, 25.24] 24.71 [24.31, 25.10] 23.99 [23.73, 24.25]

K (�10�3, MPa�1) 23.97 [22.75, 25.19] 19.91 [19.07, 20.76] 17.95 [17.45, 18.46]

a Sample numbers correspond to those defined in Table 1.

Fig. 7. Adsorption equilibrium constant ln(K) as a function of temperature 1/T.
Lines indicate linear regression.

Table 6
Linear regression of K H RT Cln /Δ( ) = − + from Eq. (6). Here, enthalpy (ΔH) is
assumed to be constant over the temperature range (300–420 K).

Sample H
R

− Δ 95% Confidence
interval

C 95% Confidence
interval

R2

1 700.6 [586.3, 814.9] �5.61 [�5.94, �5.28] 0.9864
2 724.9 [655.3, 794.5] �5.72 [�5.92, �5.52] 0.9952
3 746.3 [697.3, 795.2] �5.81 [�5.95, �5.67] 0.9978

Fig. 8. Molar flow rate of methane as a function of layer (with 10 total layers
created based on the dimension of MCMC digital rocks) in Sample 1 and of the
external driving force applied in the pore networks. The units of external force
(Kcal/mol·Å) and molar flow rate (1/fs) are consistent with the units in LAMMPS.
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d K
dT

H
RT

ln
62

Δ( ) =
( )

in which ΔH represents the adsorption enthalpy and R represents
the ideal gas constant. From linear regressions of ln(K) as a func-
tion of 1/T, shown in Fig. 7, we obtain the slope of the fit line,
�ΔH/R, and thus calculate the enthalpy, as shown in Table 6. In
each of the three pore networks, we obtain a negative enthalpy,
indicating that the adsorption process is exothermic. As the sur-
face area of the pore network is increased, more methane
molecules adsorb on the carbon surface and more heat is released,
leading to low enthalpy.
3.2. Transport behavior in pore networks

Fig. 8 shows the time-averaged molar flow rate as a function of
layer number within the pore networks in four different external
body forces through Sample 1. The molar flow rates in different
layers fluctuate across a wide range. To quantify the magnitude of
fluctuations, we calculate the percent deviation of the flow rate in
each layer from the mean, that is,

f
MF MF

MF
100%.each mean

mean
=

−
×

Across all samples and all external forces investigated, the
average fluctuation of the molar flow rate in each layer typically
decreases as the external driving force is increased, as shown in
Fig. 9. This result indicates that molecular (or Knudsen) diffusion
dominates the transport behavior in these nanoscale pore net-
works. Further evidence for diffusion-dominated transport arises
when a weak external force is applied to drive flow through the
pore networks. When the external force is weak (F¼0.03 (Kcal/
mol·Å)), the molar flow rate values are typically larger and more
positive than those in the equilibrium state (in which there is no
external driving force), which fluctuate around zero (Fig. 10). This
result confirms that the external driving force affects the mole-
cular trajectories such that the majority of the molecules move in



Fig. 9. Average molar flow rate through the three networks as a function of ex-
ternal driving force. The fluctuation is calculated as the percentage deviation of the
molar flow rate in each layer from the mean.

Fig. 11. Average molar flow rate as a function of external body force for each of the
three pore networks. The average molar flow rate is the mean molar flow rate in
layers 3–8; error bars indicate the standard deviation of the molar flow rate in
layers 3–8. Lines are linear fits, indicating that the average molar flow rate is lin-
early dependent on external body force.

Fig. 10. Molar flow rates as a function of layer in three pore networks with weak
external body force compared to that in the equilibrium molecular simulation (no
external force) in Sample 3. In the equilibrium molecular simulation, the molar
flow rate in different layers fluctuates around zero, consistent with molecular dif-
fusion as the dominant transport mechanism.
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the direction of the external force. This effect may be insignificant
compared to the molecular diffusion, however, if the external force
is not sufficiently strong. Indeed, the molar flow rate in Sample 2 is
negative in one layer (layer 7), indicating that the average flow
direction in that layer opposes the direction of the weak external
driving force.

Fig. 11 shows the averaged molar flow rate as a function of the
external body force in each pore network; to eliminate any pos-
sible end effects within each pore network, the average molar flow
rate through the pore network is calculated as the mean molar
flow rate in layers 3–8. The average molar flow rate is linearly
proportional to the external body force. A similar linear depen-
dence was reported in Roy et al. (2003), in which the molar flow
rate MF experimentally measured in nanopores was proportional
to the pressure drop via

MF
A

D
P

RTL 7Kε
Δ= ( )

where ε is the porosity and A is the cross-sectional area of the pore

network. Here, DK
d RT

M3
8pore=
π

is the Knudsen diffusivity
coefficient, which is a function of the characteristic pore diameter
dpore, temperature T, and the molar mass of gas molecules M. The
characteristic pore diameter dpore, however, cannot be easily de-
termined in sample pore networks. Using the dimensional analy-
sis, we therefore replace dpore with the reciprocal of the specific
surface area (SSA), which is the ratio of surface area ([L]2) to the
pore volume ([L]3), and calculate the analytical Knudsen diffusivity

coefficient in each sample as DK SSA
RT
M

1 8=
π

. We assume that the

external body force in our simulations is a linear function of
the pressure drop across the pore network and thus calculate the
numerical Knudsen diffusivity coefficient using Eq. (7).

In Eq. (7), the slope of the straight line is related to the product
of Knudsen diffusivity and geometric parameters of porous media,
including porosity and the length of the pore network in the flow
direction. The fit parameters extracted from the data in Fig. 11 and
the corresponding Knudsen diffusivities are shown in Table 7. The
numerical and analytical Knudsen diffusivity coefficients are of the
same order of magnitude, despite differences in porosity and
surface area. We find that the numerical diffusivity is lower than
the analytical diffusivity, and hence effectiveness factor ηo1 as
the ratio of the numerical diffusivity to the analytical diffusivity.
This result indicates that gas transport through the realistic pore
network is not simply a function of specific surface area or char-
acteristic pore diameter. More factors, such as tortuosity or pore
connectivity, contribute to the “non-ideal” diffusivity coefficient in
diffusion-dominated flow and hinder the gas transport through
nanoporous media. In the three pore networks, we typically ob-
serve that the diffusivity coefficient decreases as the surface area
increases in the three pore networks. The molecule–boundary
interactions may differ from the elastic interactions assumed in
Knudsen flow. Methane molecules can adsorb to neighboring
carbon atoms and this interaction can alter their trajectories and
hence modify the transport of methane through the network. As
the surface area increases, the effectiveness factor decreases,
which suggests that the non-ideality of Knudsen diffusion flow
becomes predominant.
4. Conclusions

Natural gas transport and storage in carbon-based nanoporous
networks, determined using the MCMC method, were investigated



Table 7
Slope and intercept for linear fits to the data in Fig. 8 and corresponding Knudsen diffusivity coefficients based on Eq. (7).

Sample Slope (k�10�3) R2 DK (�10�7 m2/s)a (numerical) DK (�10�7 m2/s)b (analytical) Effectiveness factor ηc

1 8.870.2 0.9937 1.5770.03 1.96 0.80
2 13.570.8 0.9735 1.0770.06 1.98 0.54
3 16.070.7 0.9853 0.5270.02 2.31 0.23

a Numerical diffusivity coefficient is calculated from D kRTL n/K ε( = ( ) ). Here, we assume the pressure drop is linearly proportional to the external driving force
P nF A/E(Δ = ), where A is the cross-sectional area, n is the total number of methane molecules to which the external force is applied (Turgman-Cohen et al., 2013; Zhu et al.,

2002). In our simulation, two methane molecules are inserted in each pore voxel so that n is equal to 200, 300, and 470 in samples 1–3, respectively.
b Analytical Knudsen diffusivity coefficient is calculated as DK SSA

RT
M

1 8=
π

. Here, the specific surface areas of three pore networks are 3.22 (322/100) nm�1, 3.17
(476/150) nm�1, and 2.72 (640/235) nm�1, respectively. M¼16.04 g/mol is the molar mass of methane.

c Effectiveness factor is taken as the ratio of numerical diffusivity coefficient to the analytical diffusivity coefficient.
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using a combination of molecular simulation techniques. Digital rock
reconstructions were obtained from 2-D SEM images using the
MCMC 3-D digital rock reconstruction algorithm. Subsequently, me-
thane storage and transport were characterized in three pore net-
works of varying porosity and surface area obtained from one digital
rock sample. Using Monte Carlo simulations, adsorption isotherms of
methane were calculated for temperatures ranging from 300–420 K.
The adsorption obeys the Langmuir isotherm, and the equilibrium
constants are similar in the three pore networks because only the
methane–carbon interaction is considered in the simulation. Non-
equilibrium molecular dynamics simulations reveal that molecular
diffusion dominates gas transport in quiescent conditions or for weak
external body forces. The magnitude of fluctuations of the molar flow
rate in the network monotonically decreases as the external body
force increases. The transport in nanoscale pore networks displays
Knudsen-type diffusion characteristics. The observed linear re-
lationship between the average molar flow rate and external body
force is related to the Knudsen diffusivity. Surface area is a major
factor that determines the Knudsen diffusivity. As the surface area
increases, the diffusivity coefficient decreases as well as the effec-
tiveness factor. More parameters such as pore connectivity and tor-
tuosity may also affect the gas transport through the porous network.

The combination of the MCMC and MD methods offers a un-
ique approach to investigating gas transport in nanoporous media.
By capturing increasingly realistic features of shale gas reservoirs,
this approach can generate an improved understanding of gas
transport properties that impacts production performance and
reserve estimation, for example, by determining the gas diffusivity
through the organic matrix in shale or improving the estimation of
methane adsorption by understanding the complicated molecular
interactions between different components. In future work, we
plan to extend these methods to larger-scale molecular simula-
tions in microscopic pore networks. Our current work simulates
organic matter using only carbon atoms as an initial demonstra-
tion of this combined simulation approach. In future studies, we
will incorporate more realistic molecular structures, such as
kerogen, clay, and quartz to identify gas transport and storage
mechanisms in shale gas reservoir systems.
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