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Introduction
Process modeling with recurrent neural networks has been shown to be a successful  methodology

for the modeling of systems whose internal structure may not be well known.  You and Nikolaou

(1992) showed that recurrent neural networks can effectively model nonlinear

single-input-single-output (SISO) or multiple-input-multiple-output (MIMO) systems, in batch or

continuous mode of operation, based on exact or noisy data.  As will be shown in the sequel, an

additional advantage of using RNNs for plant modeling is that, because of their form, RNNs are

directly amenable to manipulations for controller design through exact linearization (EL) (Isidori and

Ruberti, 1984; Kravaris and Chung, 1987).

EL can be directly applied to nonlinear systems of the form
dx
dt   = f(x(t)) + g(x(t))u(t),      x(t)  Rn,    u(t)  Rm (1)

y(t) = h(x(t)),       y(t)  Rm (2)

For systems of the form
dx
dt   = f(x(t), u(t)),      x(t)  Rn,    u(t)  Rm (3)

y(t) = h(x(t), u(t)),       y(t)  Rm (4)

a direct (but somewhat impractical) approach appeared in Li and Feng (1987), and an indirect method

is discussed in Nijmeijer and van der Schaft (1990).

Use of RNNs for dynamical plant identification and controller design has the following

characteristics:

• An RNN does not require any a priori internal understanding of the plant, or any linearity

assumptions.  On the other hand, for successful modeling more data must be available to offset the

lack of internal (first principle) system understanding.

• An RNN approximates plant dynamics through adjustment of the number of hidden nodes and the

values of weights. Thus, selecting a model structure is equivalent to simply changing the number of

hidden nodes.  The real states of the plant are not necessary.
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• Determining the values of internal weights, referred to as training of the RNN, is a particular form

of nonlinear regression, for which effective distributed algorithms are available (Almeida, 1989;

Pearlmutter, 1989; Williams and Zipser, 1989; You and Nikolaou, 1992). Newton-like algorithms

can also be used.  It should be stressed that the approximation capabilities of the RNN are limited

by the number of training sets available.

The plant modeling and controller design methodology we propose in this paper is comprised of

three steps:

• Model the nonlinear plant using an RNN.

• Exact-linearize the nonlinear  RNN.

• Design a linear controller for the exact-linearized model, and implement it on the real plant.

Exact Linearization Background
We will consider, for simplicity, SISO systems (m = 1  in Eqs. (1) and (2)). For MIMO systems the

reader may refer to Isidori and Ruberti (1984), or Kravaris and Soroush (1990).

The stable SISO nonlinear system P modeled by Eqs. (1) and (2) is exact-linearizable, if there

exists a positive integer r, called the exact linearizability index or relative order of P, such that

Lg Lfr–1 h(x) • 0 (5)

where the above Lie derivative  Lg Lfr–1 h(x)  is defined by the equations

Lf h := •dh, fÒ  := f h := 
•h
•x  f := ∑

i=1

n

 
•h
•xi

 fi ,     Lfr h := Lf Lf ... Lf
♦ r times ∅

  h

If  r < •, then the state feedback

u = 

v – ∑
k=0

r
 βk Lfk h(x)

βr Lg Lfr–1 h(x)
 (6)

creates a linear system L between the new input v and the original output y, described by the equation

∑
k=0

r

 βk 
dky
dtk   = v (7)
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where βk are selected so that the poles of the resultant linear system are in desired locations of the

complex plane.

The states x of the nonlinear system P are often not available.  If the process is open-loop stable, an

open loop nonlinear observer can be used to reconstruct x. The EL corresponds then to feedforward EL

through system inversion (Hirschorn, 1979). Indeed, we have Pu = y = Lv    u = P–1Lv.

Recurrent Neural Networks Background
RNNs can be traced back to the work of McCulloch and Pitts (1943).  Without loss of generality

we will consider here a SISO RNN (Fig. 1).  A node’s input-output dynamics are dictated by the

differential equation
dxi
dt   = – 

xi
Ti

  + (1 – δi,I) 
F(•j wij xj)

Ti
  + δi,I 

U
Ti

 ,   i = 1,..., n (8)

where I refers to the input node,  δij = 1 if  i = j, else 0;  xi is the ith node output, i = 1,..., n;  wij is the

connection weight from the jth node to the ith node;  U is the external input;  Ti is the time constant

associated with the ith node;  and  F(x) = 1/(1+ e–x) is the squashing function for each hidden node.

Main result
For a SISO system with one input (node 2), one output (node 3), one bias (node 1), and (n–3)

hidden nodes, Eq. (8) can be written explicitly as
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

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

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




dx1

dt
dx2
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dx3
dt
.
.
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dxn
dt
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x2(t)
T2
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 + 
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T3
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
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0

  U (9)
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Comparing eqn. (9) to eqns. (1) and (2) it is clear that an RNN is directly amenable to exact

linearization. It is straightforward to show that for such a system the linearizability index r satisfies the

inequality  r • 2.  For  r = 2, the input and state transformation Ω(v,x) has the form

  u = 
v – 



βox3 + β1f3 + β2•

n
i=1 fi 

•f3
•xi

1
T2

 β2 
•f3
•x2

 

If the inverse of the mapping  P: u ∅  y is stable (in the sense of Nikolaou and Manousiouthakis,

1989), then exact linearization yields a stable linear mapping L: v ∅  y (by appropriate selection of βi)

and a stable nonlinear mapping  V = P–1L: v ∅  u  (Nikolaou and Manousiouthakis, 1990).  In that

case, a controller can be designed for the transfer function  L(s) = 
y(s)
v(s)  = 

1
βo + β1s + ... + βrsr   

according to any linear controller design technique.  If P–1 is unstable, then no general methodology

exists for the design of an optimal controller, e.g. in a worst-case setting such as the linear H• case. An

optimal controller can be designed for a particular set-point change, such as a step (Wright and

Kravaris, 1992).

Modeling Uncertainty
If Pm–1 is stable and L is designed to be stable, then the real operator between v and y resulting

from EL according to Fig. 1b, is PPm–1L, since

ym = Lv = Pmu    u = Pm–1Lv    y = Pu = PPm–1Lv.

Let  •L = PPm–1L – L  and  ||P – Pm|| • δ, where ||N|| denotes the induced norm of an unbiased

nonlinear operator N over a set U,  defined as  ||N|| = sup
uU

 
||Nu||
||N||  .  Then

||•L|| = ||PPm–1L – L|| = ||PPm–1L – PmPm–1L|| = ||(P – Pm)Pm–1L|| • ||P – Pm|| ||Pm–1L|| • δ ||Pm–1L||

The above inequality provides a modeling error, based on which linear robust controller design

may be attempted.  Calculation of the number δ is a formidable problem, addressed by Nikolaou and

Manousiouthakis (1989).
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Case Study
We chose a nonisothermal continuous stirred tank reactor (CSTR), because of its nonlinearity.  The

CSTR’s real behavior is assumed to be represented by the following equations (Stephanopoulos,

1984).
dCA
dt   = 

FI
V  [CAI – CA(t)] – k CA(t) exp



– 

E
RT  (12)

dT
dt   = 

FI
V  [TI – T(t)] – 

•HR

ρCP
  k CA(t) exp



– 

E
RT   – 

Q(t)
ρ CP V

 (13)

where CA is the concentration of species A in the reactor; T is the temperature (output y = 
T – Ts

Ts
 );

and Q is the heat removal rate (input u = 
Q – Qs

Qs
 ).  Parameter values are shown below.

FI (
m3

hr  ) V (m3) CAI (
mol
m3

)

k (
1
hr )

E
R (•K) •HR (

J
mol ) TI (•K) ρ (

kg
m3 ) CP (

J
kg •K )

1.133 1.36 8008 7.08 107 8375 -69775 373.3 800.8 3140

An RNN (with one input, one bias and six hidden nodes) was trained with simulated training data

obtained from Eqs. (12) and (13) (Sarimveis, 1992).  Since the states of that RNN are artifacts and do

not correspond to measurable quantities, the trained RNN was used as an open-loop observer to

provide the RNN states to the block Ω.  For the resulting exact-linearized system  L(s) =

1
βo + β1s + β2s2  (βo = β1 = β2 = 1)  the PID controller  C(s) = 

β1

ε (1 + 
βo

β1s
 + 

β2

β1
s)  (ε = 1)  is optimal

(Morari and Zafiriou, 1990) resulting in the closed-loop transfer function 
y(s)

ySP(s)  =

1
εs + 1

  (independent of βi) .  The overall feedback loop is depicted in Fig. 2.  For comparison, a linear

IMC controller was designed for the linear CSTR model obtained through Taylor series linearization

around the steady state (CAs, Ts, Us) = (393.3 
mol
m3  , 547.556 •K, 1.055 108 

J
hr ).  The same closed-loop

transfer function  
y(s)

ySP(s)  = 
1

εs + 1
   was used in this design.

Results and Discussion
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Fig. 3 shows responses of the system’s temperature T to step changes on the setpoint TSP at  t = 10

hr,  for both linear and nonlinear controller designs. It is evident that there are set-point changes (e.g. –

8.7 %) for which the controller of Fig. 2 performs clearly better than the corresponding linear

controller. The following remarks are in order:

• Fig. 3 shows that for the nonlinear controller design the mapping  TSP ∅  T   approaches the linear

transfer function 
1

s + 1 .  A small discrepancy is due to the fact that the RNN only approximates the

first-principles CSTR model.  Good closed-loop performance in the presence of this plant/model

mismatch is evidence, albeit not proof, of robustness of the proposed nonlinear controller.

• The eigenvalues of  { Aij}  = { 



•fi

•xj (Us, xs)
 } , listed below, guarantee local stability of the observer.

– 0.844 – 1.06 – 1.15 – 1.55 – 1.88 –3.47 + 2.76i – 3.47 – 2.76i

Fig. 4 shows responses of the RNN states for the setpoint change  TSP = 500 •K (Fig. 3).

• The zeros of the transfer function  
(x – xs)(s)
(U – Us)(s)

 , listed below, show that P–1 is locally stable,

implying that the mapping between v and u is locally stable.

– 1.60 + 1.02i – 1.60 – 1.02i – 9.21 – 1.81 – 1.44

Fig. 5 shows u to be bounded and within feasible bounds for the setpoint change  TSP = 500 •K

(Fig. 3).

• The responses of the transfer function  
1

βo + β1s + β2s2   and the exact-linearized CSTR to v, with v

taking random values in  [– 2, 2],  are compared in Fig. 6. The discrepancy is due to the

approximation of CSTR dynamics by the RNN.

• Small perturbations to the values of the CSTR parameters resulted in no appreciable deterioration

of performance. For example, 40 hours after a setpoint change to 500 •K, TI and FI were changed

from 8008 mol/m3 and 1.133 m3/hr to 7800 mol/m3 and 1.0 m3/hr, respectively.  The behavior of

the closed-loop CSTR is shown in Fig. 7. The superiority of the RNN-based controller is clear.
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Conclusions
An integrated methodology was presented, for the modeling and controller design of nonlinear

dynamical systems.  The methodology is comprised of three steps (see Introduction).  This

methodology was tested on a CSTR and shown to perform better than a linear optimally tuned

controller.  A number of theoretical issues remain to be investigated, most notably robust stability and

performance. The multivariable case will be presented in a forthcoming publication.
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Figure Captions

Figure 1. General configuration of a recurrent neural network (RNN).

Figure 2. RNN-based feedback loop.

Figure 3. Closed-loop responses of CSTR to various setpoint changes.  Bold and thin lines indicate
RNN-based and linear control loop responses, respectively.

Figure 4. Response of the RNN states for setpoint change  TSP = 500 •K.

Figure 5. RNN-based controller output for setpoint change  TSP = 500 •K.

Figure 6. Comparison between the responses of the transfer function  
1

1 + s + s2   and the

exact-linearized CSTR to v, with v taking random values in  [– 2, 2].

Figure 7. Rejection of disturbances at  t = 50 hr  by RNN-based and linear control loops.


