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ABSTRACT

Although finite impulse resporse (FIR) models are nongarsimonious, they are frequently
used in model predictive antrol (MPC) systems because they can fit arbitrarily complex
stable linea dynamics. However, identificaion o FIR models from experimental data
may result in data-overfitting and high modeling uncertainty. To owercome this, FIR
models may be determined by (a) regularization-based least squares, and (b) indiredly
after prior identificaion d other parametric models sich as ARX. In bah cases, some
prior knowledge &ou the model is esentially assumed to be known. ARX models,
athouwgh parsimonious in terms of the number of identified parameters, perform poaly
for bad choices of mode structure and ader. In this paper we propose amethoddogy for
the identification d parsimonious FIR models. In this way, most advantages of the FIR
structure ae retained, withou its disadvantages. The idearelies in the dfedive use of
some prior information abou the model, through wavelet-based signal compresson. The
proposed methoddogy is compared with ather FIR identification methoddogies, on the
basis of the dosenessof the identified FIR to the true FIR, stealy state gain estimation,
and analysis of the prediction residuas on a aoss validation set of fresh data
Simulation studies on a single-inpu-single-output (SISO) process $iow that the proposed
methoddogy performs very well in al tests considered. Certain industrial pradices are
shown to be spedal cases of the propased formalism.
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INTRODUCTION

At the heat of any model predictive control (MPC) scheme lies aprocessmodel. Popuar
model structures used in applied MPC schemes are finite impulse resporse (FIR) models,
or step resporse (SR) models. FIR and SR models can be estimated dredly from process
inpu-output data. The main reasons for the popuarity of FIR models are:

» They can fit any complex dynamic system; and

* No mode structure neals to be seleded, provided a sufficiently long model kernel is

chosen.

However, FIR and SR models are nongarsimonious, requiring a large number of
parameters (typicdly 30 - 100) to be identified. Therefore, large anourts of data ae
neealed for the identificaion d FIR or SR model parameters with small error margins and

withou data overfitting problems.

The most straightforward method for the identificaion d FIR models is the
ordinary least-squares (OLS) method, relying on minimization o some sort of square
error between measurement and model prediction. To avoid owerfitting with OLS, ore
can use the method d regularization (ridge regresson (RR)), where apenalty on either
the size, or the change of the model parameters (FIR model kernel) isimpaosed (Wise and
Ricker, 1992, MadGregor et a. 199). Kozub (1994 proposed a refinement of the
regularization method, ly suggesting weighting matrices in the Least-Squares objedive
function that penalize dcanges in FIR coefficients toward the tal end d the FIR
coefficient sequence  Ricker (1988 studied the use of partial least squares (PLS) and
singular value decompasition (SVD) for estimating FIR models. Maaggregor et al. (1991
pointed ou that the SVD method applied by Ricker (1988 was the same & principle
comporent regresson (PCR). MadGregor et a. (1991) and Dayal and Maagregor (1996).

provide extensive discussons of the dove methodks.

To overcome the problems associated with the nonparsimony of FIR models, one can use
parsimonious models of low order, such as transfer function models or ARX models (Box
and Jenkins, 1976 Ljung, 1987 Soderstrom and Stoica, 1989. FIR models can then be
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obtained from the ARX models through mathematicd manipulations. Although,
parsmonious ARX models can be identified more accrately than mathematicaly
equivalent FIR models, the choice of appropriate model order and structure for ARX
models become aqucia iswes. In esence some prior knowledge @ou the model must
be used, for areasonable model structure to be seleded. However, prior knowledge dou
amodel could aso be used for the development of parsimonious FIR models. The main
thesis of this paper is that parssmonious FIR model structures can indeed be constructed
and correspondng models can be identified from experimental data, provided certain
prior knowledge @ou the model is avalable. For most chemicd processes that

knowledge is often avail able and, thus, can be eaily used.

The main ideaof the paper can be explained through Figure 1: While virtually all
coefficients of the FIR model kernel {hj}j=1.... need to be identified for small values of j,
only few coefficients need to be identified for large j. Vaues of hy na explicitly
identified can be cnstructed through appropriate interpolation. One question, then, is
how to seled which terms of the sequence{h;} to identify explicitly and haw to construct
terms of {h} not explicitly identified. In fad, as we show in the next sedion, the true
problem in FIR model identificaion is that of estimating the kernel {h;};=1.... through
reconstruction d a orrespondng continuows function from sampled values of that
function. Clealy, techniques more sophsticated than uriform sampling can be used for
the sampling of that continuows function. We propase asolution based on the discrete
wavelet transform (DWT). Using the cmpresson cagpabiliti es of wavelets, we present a
methoddogy to identify parsmonious FIR models. We show that cetain simple
methoddogies used in induwstrial pradice generate wavelet-compressed FIR models using
spedfic wavelets (such as Haa's) and we propcse nortrivial improvements on these

methoddogies.

The main advantage of the discrete wavelet transform (DWT) of a sequenceis that
it is locdized in bah frequency and time. By truncating small DWT coefficients, the
original sequence may be sparsely represented, in terms of a smaler number of
coefficients. From prior partial knowledge of the model and the nature of the FIR

coefficients, we can truncae alarge number of wavelet coefficients a priori, and thus
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require fewer coefficientsto beidentified. Thisisthe basic ideauponwhich we base our

methoddogy of identifying FIR coefficients parsimoniously.

Methoddogies using wavelets for identification have been proposed in literature
in various contexts. Tsatsanis and Giannakis (1992 propcse an agorithm for the
identificaion d time varying auto-regressve (AR) and auto-regressve moving-average
(ARMA) models using wavelets. Pati et al. (1993 examine their methodfor model-order
reductions of linea stable systems using wavelet approximations. Sureshbabu and Farrell
(1995 study a wavelet based system identification method for nonlinea systems. A
method for the denoising of inpu-output identification dita using wavelet based
prefiltering was presented by Palavajhaa @ a. (1999. Wavelets were gplied in
deteding transient plant disturbances and jumps by Tsatsanis and Giannakis (1994).

The rest of the paper is organized as follows: First, we discuss the FIR model
structure for discrete-time systems, and explain how a @ntinuows-time function unakrlies
that structure. Next, we briefly present some of the prevaili ng identificaion schemes for
the identification d FIR models, namely OLS, regularization, and ARX identificaion
(along the lines presented in Dayal and MadGregor, 1996. Following this, we present
the DWT, explain hawv it can be used in the development of parsimonious FIR model
structures, and present a resulting identification methoddogy. Next, we ill ustrate the
proposed methodthrough an example, where we consider a SISO processwith dead-time
and inverse resporse, and compare our methoddogy to cather FIR identificaion
methoddogies. Finally, we summarize our results and pesent diredions for future

reseach.

FIR MODEL IDENTIFICATION

Continuous- and discrete-time FIR models

Consider a stable, causal, continuows-time SISO process modeled by the following

convdution mode!:
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t
y(t) =(gu)(®) = [g(t—rju(r)dr (1)

where [Jisthe mnvdution operator; y(t) isthe output at timet; u(t) istheinpu at time
t; g(t) isthe model kernel, equal to the impulse resporse of the system. For a process

uniformly sampled every T time units, the output at time t,, = KT can be written as

y(KT) = y(ty) = jg(tk —nu(r)dr = Z jg(tk —ru(r)dr (2)
j==oot]_

If u(r) = u(tj-1) is constant for r in the interval [t.1 , t), as is the cae with dgital-

controlled processes, then

y(kT) = Z u(t; -1)jg(tk rydr
j=—0o J -1

tk tjl

S u(ti) [o)dr

j==co et
(k- j+D)T
= z utj—y) [o(r)dr
j=-o (k=1T

1Y

k
Y utj_g)he-js O

j:—oo

y(ti) = Elh Ut
J:

. (3)
= 2 hjultc;)
Ei
where hj, defined as
o1 (j+DT _
= Jo(mdr= fg()dr, j=12.- (4)
t; iT

are the wefficients of the causal discrete-time convdution model correspondng to the

continuows-time model of equation (1). At this point one might conclude that all
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coefficients h; need to be identified, in order for the FIR model of eqn. (3) to be
identified. Thisisnat necessarily true. Indeed, as equation (4) implies, the identificaion
problem consists of identifying the crrespondng integrals of the @ntinuouws-time kernel

g(1), which, in turn, can be gproximated as

9= 9 (D)= 3 6 (0 (5)

where {v,,---,v,,} is aset of basis functions for the subspace of functions containing

Om(t). Substituting equation (5) into equation (4) yields

m (DT

=3 Iv (T)dT—ZCW , J=1--,n

i=1

O W 0 Wiy

0 -
=00 0 LB = > o) (6)
%\I an E _

Equation (6) makes it clea that identificaion d the FIR model of equation (3) can be

oo
Doopoo

n

transformed into identificaion d the vedor [c1-~-cm]T. The alvantage of this
transformation is that the basis functions {v,,---,v,,} can be virtualy always chosen in a

way such that m<<n. Indeed, while the value of n is determined by the @ntinuows-time
system sampling period T (which, in turn, shoud be small enowgh to prevent aiasing),
the value of m is not. In esence equation (6) demonstrates that the vedor

h=[h, -~ h,]" can be gproximately parametrized (with good approximation) by a
vedor in the subspace of O™ spanned by the set of vedors
{wi 2[wy - wylTi=1m.

The @&owve discusson returaly leals to the problem of how to seled the vedors

{w; =[wy; - Wni]T,i =1,---,m. Certainly, there ae severa dternatives. In the

sequel we propose an approacdh relying onthe DWT and explain its advantages.
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FIR model identification

For notational simplicity, in the sequel we will assume that x(kT) = x(k) for any variable

X. Asaume the foll owing FIR model structure for a stable system:
n
y(k) = 3 hju(k = j) +e(k) = hTu(k) +e(k) (7)
j=1

where (k) is output additive noise that is i.i.d. (identicdly, independently distributed)

with 0 mean and variance ¢*;
h=[y hp o nJ (8)
isthe FIR model kernel; and

uk) =fuk-1) uk-2) ... uk-n)]" (9)

isthe veador of lagged inpus.

FIR ldentification using OLS

With N observations, inpu-output data can be written in matrix form as
y=dh+e (10)

where

y(k=-N+1)C
_N+2C
y£§w N+2)s
o C

o C
O Yk) C

(11)
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T (k-N+1)C
' (k=N +2)f
: L

u' (k) E

®= (12)

mOad

e(k-N+DC

_ C

o2 Bk -N+2)p
UJ : L

3 ek

(13)

The OLS solution to the @owve problem is found ty solving the standard least-squares

problem

min (y - ®h)" (y - h) (14)

whaose solutionis the estimate of the FIR modd kerndl:

» T TepTy 21T

h:(CD CD) e'yzR™ o'y (15)
where R 2 ®"d . Thebiasof the OLS estimator his

b =E[h - h]
=h-Ep]
=h-E R‘lchy]
=h-R0TE[oh +¢] (16)
=h-R T o(E[h] + E[€])
=h-R7Rh
=0
where h is the true FIR model coefficient vedor, and E is the expedation operator.

Similarly it can be eaily shown that the variance of the OLS estimator h is

Elh-Ry(h-A)T|=0?R? (17)

and the mean square eror for the OLS estimator is
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Elth-R)T (h-R)|= o%tracdr ?) (18)

Regularization
In regularization, the objedive function d the parameter estimation scheme impaoses a
penalty on a function d the FIR coefficients vedor h. For example, h can be estimated

from
min (y —®h)" (y -®h)+ahTQh (19)

where a is anonregative scdar and Q is a positive definite matrix. The solution for this
minimizationis
h = [R +aQ]_l(DTy (20)

Severa options for Q are available (Daya and MadGregor, 1996§. Kozub (1999
suggested the choice

Q=A'LA (21)

where A and L arethefollowing nx n matrices

0l 0 O oC
Hy L
D1 1 O O[
A=00 -1 1 - OF (22)
g. . .. .. L
D. . .[
90 0 ~1 1F
@d 0 oC
%) 2 ... .. okt
. . . -[
L=0 : - :C (23)
3 0 - noa of
M 0 0 nE

This choicefor Q places an increasing penalty on the FIR coefficient differences (hi-hi.1)

asi increases from 2 to n.
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FIR modelsthrough ARX Model I dentification

To determine the FIR coefficients, orne auld first identify a structured model, like an
autoregressve with exogenous inpus (ARX) model, from which ore could subsequently

determine the FIR coefficients. The ARX model structureis of the following form:

y(k) = —Elajy<k— )+ %lbju<k— ) + ek (24)
1= 1=

ARX models can beidentified using standard linea least-squares techniques. If the noise

eisnot whitethen anoise mode can be alded to the dove model.

THE DISCRETE WAVELET TRANSFORM (DWT)

The DWT of a (finite or infinite dimensional) vedor is the result of a linea
transformation that generates a new vedor of dimension equal to that of the original

vedor. Figure 2 shows shematicdly an example of how Mallat’s multiresolution

analysis algorithm (Mallat, 1989 transforms a vedor f =[f, - fg]" in O® toits

DWT f =[f; - fg]" in O%. Atead step, the weighted averages and dff erences of

correspondng vedor segments are wmputed. The averaging and dff erencing operations
are esentially low- and high-passfilt ering operations that reved the frequency content of
segments of the original vedor in various frequency bands. Therefore, the DWT is a
time-frequency analysis of a signal. The net effed of the cdculations in Figure 2 is
multiplicaion d the origina vedor by an invertible matrix W. However, as Figure 2
shows, Mallat’s algorithm caries out that matrix-vedor multiplicaion in an extremely

efficient manner (O(n) computations).

The decompaosition d a signal shown in Figure 2 can also be seen as passng the
signal through a filter bank (Strang and Nguyen, 1996. At ead resolution level i
(1=i<3)thesignal is passed through alow-passfilter C, and a high-passfilter D. C and
D are digital filters constructed from chasen filter coefficients ¢, and d; respedively,
acording to the kind o wavelet chasen. The DWT of asigna depends on the particular
kind d wavelet (filters C and D) chosen. In this gudy, we use aquadratic spline (QS)
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wavelet basis, because it results in smooth approximations of the original function. The
coefficients for the filters C and D correspondng to the QS wavelet are (Strang and
Nguyen, 19969

C o ¢ Cs):%(‘l 33 -1 (25)
(do dy dy ds):%(_l 3 -3 1) (26)

For example, to find the DWT of a vedor in 012 us ng the ideain Figure 2, ore has to

successvely multiply the original vedor by the foll owing matrices, whose product isW.

Lo *+C C Cg C

B Cgk C C, Cs E

O Co C C, C3 C

B Co C C, C3 E

B Co ¢ C C3 E

= U Co G CotC3r
W = 50 208 27
2 gjodel d, dj E( )

U do d; d, dj C

] do o dp dy -

O do d; dp dj C

. dp dy d, ds -

B do d; dp+d3E
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[Lo+C Cp C3 i C

[ | L

[ o G C GC3 | C

O Cho C Cp+cCz | C
................................................................ rl:
otd; dp dj | C

0 do d; dy dj | C

W G do dy dp*dy | c (28)

rrgo T C
[ ! 1 L

0 ! L

O l 1 C

[] | L

0 ! 1 C

[ ! L

0 | o

g [ 1E

Remark: Theterms ¢y + ¢, ¢, +C3, dy +d;, d, +d5 that appea in the ébove matrices
are due to the fad that the signal transformed hes finite length. To cope for that, constant
extrapalationis used (Strang and Nguyen, 199§.

For comparison puposes, we dso use the Haa wavelet basis, the smplest

wavelet, with relatively poa filtering charaderistics. For the Haa wavelet basis, the

filters C and D, have the following weights:

(0 )= 1) (29)
(G0 a)=—7 -1) (30)

For example, to find the DWT of avedor in 0° using the ideain Figure 2, ore has to

successvely multiply the original vedor by the foll owing matrices
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(Co ¢ L
0 C
0 ©© @ C
: wa
Cg C
Wao =00 AL 31
0 C
0 do dy C
0 de d C
0 o -t C
U do dir
[y ©C i C
0 C
O Co Gt C
Hy dy | C
0 [ C
dog dq:
W, = o_ 1., ________ C 32
273 :rl - (32)
0 C
0 1
O | 1 C
U ! L
O . 1C
(€ C : C
gj """" R C
o A __. C
0 1 C
U | 1 L
:D | C
W, 0 i 1 C (33)
0 . L
O | 1 C
[l ! 1 L
U ! L
O . 1C
In general, the DWT of avedor f is determined as
05O 0O
0 @ O
. 09° O
f:Sg(l) B=(W1Wz-~Wn,—1Wn,)f:Wf (34)
O : O
%(nr_l)H

where the matrices Wi (i=1,...,) are defined as foll ows:
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HHo, | 0 E
W. = L 35
=il ¢ (35)
= 0 : ln_ni E
where
%CoJfCl C, C E
0 Co G C G 0
Ho.=g G G G C . E (36)
0 : O
B Co & C+CE
and
My+d; d, dj C
. do d d ds E
Hyi = 0 do oy sz 93 ' E ( 37)
. Co =
H do dy dy+dsF

n, 21 is the highest resolution level (original signal level) with the lowest resolution

level being 0. From a pradicd viewpoint, we will use the QS wavelet transform to

resolve signals of length

n=3x2" >6 (38)

and the Haa wavelet for signals of length

n=2"%>2 (39)

At ead resolution level i (1<i<n,), we use the matrices Ho; and Hy; to derive nj/2

DWT detail coefficients, and ni/2 coefficients at the immediately lower resolution level,

where

n =3x2', 1<i<n, (40)

for the QS basis, and
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n =2, 1<i<n, (41)

for the Haa basis.

Finally, the inverse DWT (IDWT) can be eaily found. Given the DWT f, the
IDWT can be foundas

f =W (42)
Mallat’s algorithm can be used to perform the éove matrix/vedor multiplicaion in O(n)

multi plications, because, for several classs of wavelets, the matrix W ™ has the same

sparse structure & W. For orthonamal wavelets, W is dso othonamal, with

wl=wT,

FIR MODEL COMPRESSON USING THE DWT

We will first explain hov wavelets can be used to compress a given FIR model. The
discusson will then lead to a methoddogy for the identification o an initialy partialy

known FIR model in compressed form.

Compresson of FIR models

FIR model compresson (approximation) using wavelets first invaves determining the
DWT coefficients of the FIR model { h;} using equation (34) for a cetain wavelet. Of the
obtained DWT coefficients, only coefficients with magnitude &owve a cetain threshold
value ae significant and, thus, retained, with the rest being negleded (set to zero). Good
compresgon can be atained if a large number of the DWT coefficients are negleded.

The dharaderistics of the particular wavelet used (e.g., smoothnesg are dso important.

The fedures of the finite-impulse resporse of typicd stable processdynamics are
dead-times, inverse resporses, a rise in the processoutput and finally adecg. This can
be observed in Figure 1, which shows al of these feauresin an FIR processmodel. The
discrete-time FIR model coefficients are equidistantly sampled pants of the continuows-

time impulse resporse of the process The sampling interval T is chasen acrding to
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Shannoris smpling theorem (Benedetto, 1993, to prevent diasing effeds. This choice
of Twould be cgable of capturing virtualy all fast or abrupt changes (high frequency) in
the impulse resporse.  From Figure 1 it can be observed that for typicd impulse
resporses, al the fast and alyupt changes occur during the ealy part of the impulse
resporse. However, thetall of the impulse resporse dianges (decas) much more slowly,
which suggests that we could sample & a slower rate there. Therefore, a methoddogy is
desired which samples the impulse resporse & different rates, during different regimes of
the resporse. By doing so, ore would need to knowv fewer parameters by which to
charaderize the impulse resporse. This could be adieved in many ways, including

wavelet compressontediniques. Theideais asfollows.

Consider the DWT

h =Wh (43)

of the FIR kernel vedor h. The DWT coefficients are mntained in the vedtor h shown in
Figure 3. Ascan be seenin Figure 3, at the different resolution levels there ae only few
significant coefficients, with the rest being negligible. The percentage of insignificant
coefficients increases at higher resolution levels. Thus, by retaining only the significant
DWT coefficients, and regleding all the others (setting them to zero) we can achieve

compresson d the FIR kernels. To explain this procedure of compresson, consider a

vedor of the retained coefficients, denoted by ﬁc , asfollows

he =P'h (44)

where h; is a vedor of length n;; n¢ is the number of retained coefficients after

compresson; and P isaprojedion matrix of dimensions nxn.. The projedion matrix P

is constructed with its columns consisting of unit vedors v; 00", whose i™ entry is 1
and al others 0. The indicesi are chosen so that i [1., where | denotes the set of

indices of the retained DWT coefficients. The cmpressed FIR model is then
recnstructed using the IDWT as follows
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h=h, =W™ph, = Xh, (45)

where X 2 W ~Pisamatrix of dimensions nxn,.

FIR Model I dentification using Wavelet Compresson
In identifying FIR models using wavelet compresson, we use the standard OL S approach.
Consider the linea FIR model in equation (7). This equation can be written as
y(k) =hTu(k) +e(k) = (Wh) T (W Tu(k)) +e(k) =hTW Tu(k) +e(k) (46)
By compressng the DWT coefficients as described ealier, we can approximate y(k) as
y(k)=h{PWTu(k) + e(k) =h{ X Tu(k) + e(k) =hcu(k) +e(k) ~ (47)
where ti(k) =2 X Tu(k) .

Remark: If the wavedet matrix W is orthonamal, then W'T:W, and

t(k) = PTT(K) = T, (), where Ti(k) = Wu(k) isthe DWT of u(K). .

We then identify the retained coefficients ﬁc using OLS to get the estimate of the

compressed DWT coefficients as

he=(@76) o7y (48)
where
@7 (k-N+12)0
éA%T(k"NJ’Z)D—cbx (49)
=g (N
0o 0
g ok 0§

and the vedor vy is defined as in equation (11). The FIR modd is then estimated by

reconstruction wsing the IDWT as follows
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h. = WP, )= xh, (50)

Biasand Varianceof FIR h,

Theorem 1. The bias b, = E[h—ﬁC]: h—E[ﬁC] in the estimate of the FIR model

kernel ﬁc using wavelet compressonis equal to
b. =h-h, (51)
where h isthe true kernel, and h. is the true DWT-compressed approximation o h.

Proof. SeeAppendix.

Theorem 2. The varianceof the estimator b is

Elh-he)(h-ho)T]=bebT +a2x (X TRX X (52)
Prodf. SeeAppendix.

Corollary 1. The mean square earor of the estimate ﬁc isgiven by
ATty LG0T 2 Ty [Ty T
Elth-R)T (h-h) ——%Cbcﬂr traceﬁxx RX | X % (53)
n

Choiceof Retained DWT Coefficientsfor Compresson

The bias term bIbC in equations (52) and (53) can be made smal by retaining
appropriate DWT coefficients, which, havever, we seek to determine in the first place

The doice of retained DWT coefficients is made using a number of fadors discussed
below.

The first step invalves a dhoice of retaining DWT coefficients based on prior

knowledge of the process Let the prior knowledge avail able to us abou the processbe a

very crude FIR model kernel denoted by hg, with DWT denoted by ﬁo. The initial set of
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retained coefficients is obtained by discarding DWT coefficients in ﬁo that are small. A

DWT coefficient isretained onthe following basis:
loc 2{i:|ho;| 28} (54)

where dis ome small (possbly resolution-level-dependent) pasiti ve threshald value (not
to be wnfused with thresholding used in denoising of signals by Donoho and co-
workers), and Iy refersto theinitial set of indices of the retained DWT coefficients. This

compresgonintroduces asmall error, as the foll owing theorem shows.

Theorem 3. Consider an FIR model h, which is compressed using the DWT, with a
threshold of . Then the operator induced nam error is bounded as

lh=he|, <ca (55)

cli

where cis ©me mnstant, and

i denates theinduced 2-norm of an operator.

Prodf. SeeAppendix.

Once we have aset of retained DWT coefficients, we identify these mefficients
from processinpu-output data. The FIR coefficients are then reconstructed from these
identified DWT coefficients using the IDWT. Using the identified model, we obtain the
predictionresiduals

&(k) = y(k) - h u(k) (56)

The residuals are computed for a aossvalidation data set (not used in the identificaion),
and are tested for the foll owing:

1. Independence of residuals. The autocorrelations of the residuals are tested for
independence (whitenesg by using the method odlined in Ljung (1987. The
autocorrelation estimate & delay 1 of the residuals é(k), for k=1,..., Ny, (where Ny is

the length of the aossvalidation set) is given by
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Ny |7
(D) =—— 3 elk)ek +7) (57)
0°Ny k=1

where 62 isthe variance etimate of the residuals. The residuals can then be dhedked

for independence by cheding whether

A P
fe(T)| < \/N:xKa (58)

where K, isthe a-level of the normal distribution N(O,1).

N, —1

P=§ 72(@) (59)
T=—N,+1

Residual sum of squares(Rsg9: We seek to retain DWT coefficients that would make

Rssas gnall aspossble. Rssisdefined as

R$=§¥m) (60)
k=1

After identifying an FIR model, with the initial set of retained DWT coefficients,

we thed the residuals using the &owe tests. We then add/drop coefficients and repea

the identification, and residual testing. This procedure is repeded urtil the residuals are

independent (with some a@nfidence), and Rssis small enough.

Remarks:

Our computational experience has siown that all DWT coefficients correspondng to
the lowest resolution level shoud be retained. This helps proper identificaion d the
steady state dharaderistics of the impulse resporse.

Theindices of the retained DWT detail coefficients correspondng to lower resolution
levels (0-2 typicdly) of the prior crude model hy, end up keing good choices for the

model being identified aswell. The reason for thisis that the lower resolution detail s
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capture the lower frequency content of the FIR models. It isthe indices of the higher

resolution cetail s that are usualy different for different models.

* The outlined procedure to seled the wefficients suggests that we may have to try a
large number of combinations of DWT coefficients to arrive & the best set. Thisis

however naot the cae because of the following reasons:

— The lower resolution level indices of retained comporents usualy remain the

same for typicd processes modeled by FIR models.

— Only very few of the higher resolution level coefficients need to be retained, and
they tend to be the ealy ones. This is becaise, as discussd ealier, the impulse

resporse needs to be sampled more frequently during the ealier part of it.

— Choasing coefficients at a lower level is independent of the retained coefficients
a higher levels. Therefore, a bottom-up procedure for seledion o retained
coefficientsis suggested, i.e., we start choasing coefficients from lower resolution

levelsfirst, and then move on upward to higher levels.

Algorithm
The foll owing steps are suggested for choasing the retained DWT coefficients:

Step 1 Obtain the DWT ﬁo of the prior FIR model ho. Obtain a set of indices for detail

coefficients to retain, acording to a cetain threshold (possbly resolution-level -
dependent). Retain all indices correspondng to the lowest resolution signal. Let
this st of retained coefficient indices be denoted by I.. Set 1=3.

Step 2 Identify the DWT coefficients correspondng to indices in | using experimental
inpu-output data. Construct FIR model.

Step 3. Perform tests on the prediction residuals on crossvali dation experimental data.

Step 4. If the residuals test satisfadorily (i.e. independent and small Rsg then go to Step 6,

otherwise ontinue.
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Step 5 Add/Drop DWT detail s correspondng to level |, and updite retained indices st
I, and reped steps 2 - 4.

Step 6. If level | < n,, the highest resolutionlevel, increase | and reped steps 2 - 5.

Step 7. Stop.

EXAMPLE

A subsystem of a steam gas reformer is considered (Meziou and Alatigi, 1992. The
reformer can operate & either 58% or 100% cgpadty. When the reformer moves from
one caaadty to the other, the transfer function between the steam-to-carbon ratio and

temperature changes from

_ 0.841(-25s+1)e™®
(44s® +11s+1)

H(s) (61)

at 58% cepadty to

_1.118-2.5s+1)e

() (44s* +11s+1)

(62)

at 1006 cgpadty. Meziou and Alatigi (1992 show that the processcan be satisfadorily
controlled at 58% cgpadty by a cntroller designed on the basis of the 58% cgpadty
model. However, if that controller is used to control the plant at 100 cgpadty, the
resulting closed-loop kehavior is highly oscill atory, hence unsatisfadory. Based onthat,
the &ove aithors establi sh the need for the development of an improved processmodel at
100% cgpadty. We will solve this problem using the goproach propased in this paper.

We will seek to identify a discrete-time FIR model for the stean reformer at 100%
cgpadty. With sampling performed every 0.5 min, the process has a settling time of
around 90sampling intervals. The number of coefficients we chocse for the FIR model is
n=96. 3000 pocessinpu-output data points are generated by applying a PRBS input to

the process The output is corrupted by additive Gausgan ndse with zero mean and a
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standard deviation d 0.05. Thefirst 2000 pants are used for identificaion, and the next
1000 pants for crossvalidation d the identified model.

Through this example we perform the foll owing:
* Demonstrate the proposed FIR identification methoddogy with wavelet compresson.
» Compare the propased methodto ather existing FIR identificaion schemes.

» Compare the proposed method wsing the QS wavelet compresson to Haa wavelet
compresson (correspondng to heuristic methods used in pradice).

FIR ldentification using wavelet compresson

In this sub-sedion we identify the FIR model coefficients (contained in h) using the
proposed wavelet compresson scheme with the QS basis. The seledion d wavelet
coefficients to be retained is demonstrated by first using some prior knowledge of the

process and then by performing tests on a aossvalidation cbta set.

Prior knowledge of the process is available & an FIR model at a different
operating point (58% cgpadty). The prior FIR model, and the FIR moddl to be identified
(unknowvn) are shown in Figure 4. As an initial guess for the retained wavelet
coefficients to be identified, we retain all the lowest resolution coefficients, and the detail

at resolutionlevels 0, 1,and 2. Theretained coefficients at theinitia step (Ioc) are

1 2 3 4 5 7 8 13 14
all coefficierts1,2,3 detailsl,2at detailsl,2at detailsl,2at
atlowest resolution resolution resolution
resolutiorevel levelO levell level2

The FIR moded is determined by identifying these efficients using the first 2000
inpu-output data points. Thismodel isused to predict the output in the next 1000 pants,
and the residuals are obtained using the 1000 pants from the aossvalidation set. The
autocorrelation d the residuals is analyzed to examine their whitenessusing the method
described in the previous fdion. Theresiduals are foundto be autocorrelated upto alag
of 8. We then add coefficients 25 and 26(detail s 1, 2 at resolution level 3) to get the new
index set 1;.. The residual anaysis is repeaed, and we find that the residuals appea
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white (95% confidence level), and aso there is a reduction in Rs We then add
coefficient 51 (detall 1 at resolution level 4) to get the index set I,.. Residual analysis
now reveds that the residuals are white and there is a further reduction in Rss The
autocorrelations of the residuals (up to a lag of 15) for the 3 set of retained indices and
95% confidence bound (for whitenesg are plotted in Figure 5. These results are

summarized in Table 1.

Comparison With Other Methods

Through this example we mmpare the identification d following schemes:

(A) Dired nonmrsimonious FIR identificaion.

(B) FIR identificaion wsing regularization.

(C) FIR model determination from ARX identificaionwith exad model order seledion.

(D) FIR model determination from ARX identificaion with inexad model order
seledion.

(E) FIR modd identificaion wsing wavelet compressonwith Haa basis.
(F) FIR moddl identificaion using wavelet compressonwith QS basis.

We @mpare these models based on the mean square erors of their FIR
coefficients. The erors are measured as deviations of the estimated FIR coefficients from

the true (assumed known for the purpose of comparison) FIR coefficients as foll ows:

MSE,, =

S|

Sl f (63)

where h;s refer to the true FIR coefficients, and ﬁjs refer to the identified FIR
coefficients using the different techniques. The FIR models identified using methods A-F
are plotted along with the ad¢ua FIR in Figure 6.

Comparisons based on ouput prediction errors are dso made on a @oss
validation dhta set consisting of 1000 inpu-output data points. The residual squared
sums (Rs9 for methods A - F are cmputed as in equation (60).
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Finaly, we compare the stealy-state gains obtained using the different FIR

models as

Ges = ﬁj (64)

Mo

1

]

where h j are the identified FIR coefficients using methods A-F. The true gain o the

processis 1.118. All the results of these comparisons are givein Table 2.

Comparison d the wavelet compresson method to identify FIR models reveds a

number of important charaderistics of the proposed scheme.

* Ascan be seen from the comparison d MSE;,, method F (using wavelet compresson
with QS basis) is lowest secondto method C, which is the ARX model identificaion
with exad choice of model order and with the gpropriate noise model being fitted.
However the ARX scheme does very poaly when an incorred model order is
seleded.

e Comparison d stealy state gains reveds the wavelet method (F) is dightly better than
methods (A), (B), and (E), and considerably better than the ARX schemes.

* The tests based on MSE;, and Gss canna be performed in red situations, as the true

model and model gain would na be avail able.

» The more redistic test is crossvalidation ona fresh set of testing data. The wavelet
method (F) shows the lowest Rss on this crossvalidation test. Again, method (D)
performs amost as well as the wavelet method, bu method (C) performs poarly,

again because of incorred model seledion.

We dso make mmparisons of the wavelet compresson method wsing the QS
wavelet basis, with method (E) which uses the Haa wavelet basis. Again, method (F)
performs better than this method in all the tests. Also, the QS basis provides better
compresson, than compresson with the Haa wavelet basis. Compresson is determined

as
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Total Numberof FIR kernels
Numberof identified DWT coefficierts

Compressin =

With the QS wavelet basis we get a wmpresson d 7.4, while with the Haa wavelet

basis we get a ompresson o 5.1.

CONCLUSIONS

In this paper we have proposed a new methoddogy for the identificaion d processFIR
models using wavelet compresson techniques. Comparisons are made with aher
existing schemes, on the basis of closeness of fit with true process models, stealy state
gains, and tests on prediction residuals. We have shown that this method (with the QS
basis) performs comparably or better than the existing schemes for FIR identification. It
isto be noted here that proper seledion d the wavelet coefficients to be retained is an
important isue in the proposed methoddogy. A methoddogy for retaining the best

wavel et coefficients for compresson d the FIR model was given.

Comparisons of the propcsed methoddogy are dso made for different choices of
the wavelet basis. We show that the QS basis gives better approximation, pediction, and
compresson than the Haa wavelet basis. The Haa wavelet basis ideais used in the
indwstry for identifying FIR models, where FIR coefficients during the decay regimes of
the impulse resporse ae mnsidered constant over windows of time. The ideahereis to
sample the impulse resporse of the system at diff erent rates during diff erent regimes. The
QS wavelet basis for compresson povides a good way to construct FIR coefficients not

identified dredly through appropriate interpolation.
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APPENDIX A
Proof of Theorem 1.

Consider the estimate, ﬁc of the FIR h, oktained using the wavelet compresson

technique
A = X(XTRX)_lXTCDTy (A-1)
The expected value of his
E[h] = X(XTRX)_lXTCDT Ey]

= X(XTRX)_lXTRh A-2)
= Qh

1
where Q 2 X(XTRX) XTR . Post-multiplying Q by X resuiltsin

QX = X (A-3)

Xisan x n; matrix with rank n.. If R is of full rank (input must be persistently exciting

of order n), then Q hasrank n.. Thisis becaise X'"RX would be of rank n., consequently
-1 -1
XT(XTRX) X Twould be of rank ne, and then so would XT(XTRX) XR. SinceQ

isof rank ng, it would have n. eigen vedors correspondng to its n. norzero eigen values.

Consider E[ ﬁc], which can be written as:
E[ﬁc] =Qh=Qwh (A-4)

where h isthe DWT of h. h may be permuted as foll ows with a permutation matrix |,

such that itsfirst n; entries are retained DWT coefficients HC after compresson

c ~

g Bz'ph (A -5)
H;c'D
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where ﬁc- are the wefficients discarded after compresson. The matrix 1, may be

partitioned as
1, =[P Pc] (A-6)

where P is the projedion matrix, and P consists of the unit vedorsin |, na contained in

P. The matrix |, isaunitary matrix, i.e.
T, T =
ol p =1plp =1 A-7)

Next, consider h which may be written as

T oy Ty E ol (TR oyl Chel
h=wlh=whT h=wl Th=w lpHijE (A-8)
-1 .
andW |, may be written as
wl =[wp W‘lpc.]=[x Xe] (A-9)

where X 2 W™P,. Since wlis nonsingular and al the vedors of P¢ are linealy

independent orthonamal to the vedors in P, X¢ is linealy independent from X.
Therefore, Sincethe mlumns of X are egen vedors of Q (rank nc) the wlumns of X

form the null spaceof Q, i.e.
QXy =0 (A-10
Therefore we have
QW™ , =[QX 0] =[X 0] (A-11)

We can therefore expressE[h¢] asfoll ows

~

. 1 [h.O Ch.O_ =
E[hc]:Qh:QW y p%sgz [X q] EE: Xh, = h, (A-12)

The bias b. can therefore be written as
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bC:h—E[ﬁC]:h—hC

OEA.

APPENDIX B

Proof of Theorem 2.

(A -13)

Consider the mvariance of the estimator h. of the FIR h, which can be written as

follows:
El(h-h)(h-h.)" [=hhT —hE[Al |- Ep, hT + Ep.AT |
E[ ﬁc] is known from equation (A-12). E[ ﬁcﬁl] can be written as
e[pAT]= XEgicﬁléd
and
eth.h - EﬁXTRX)ﬂXT@Ty %XTRX)_IXTCDTyﬁ E
= (xR "X T@ Elyy X (X TRX )"

where E[yy'] can be written as
E[ny] = ohhTo + 02

Substituting this in equation (B-3) we get

Efhch! = ﬁxTRx)'leR i’ ﬁxTRx)'leRﬁ + 2 (X TRX )

Thisresultsin

(B-1)

(B-2)

(B-3)

(8- 4)

(B-5)

Page 32 of 43



Nikolaou& Vuthandam Parsimonious FIR Models

JAME XERhI KT =QnhTQT +a?X (X "RX ] X (B-6)
Thisresultsin the @variance etimate of h in equationto be
A~ A~ -1
E[(h —hg)(h- hC)T] =hh" -hhTQT -Qhh™ +QhhTQT +o2X(XTRX) X =

=((1-Q)n)((1 -@)n)" +a2x(XTRX) X" (B-7)

We can write equation (B-7) in terms of the bias b as
0 0T T, 2ulvT 10T
E[(h—hc)(h—hc) ]:bb +o x(x Rx) X (B-9)
The mean squared error of the estimate h can be obtained from

E[(h ~he)"(h- F]C)] = Tracebb" + GZX(XTRX)_leE

(B-9)
=bTb+ 02Trace%<(XTRX)_lXT%
OEA.

APPENDIX C

Proof of Theorem 3.

The indwed 2-norm of an operator L:u > y = Lu, defined as y(k) = (Lu)(k) = hTu(k),

isgiven by:

(C-1)

n .
Uiz = SUF’”‘ e
k=1

Osw<2

Let Lg:u> y = Lou bedefined as y(k) = (Lou)(k) = hfu(k). Then
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”L - Lcniz = sup"‘ %(hk - hc,k)e_jkw

0<w<2mk=1
1
n ’_’F
- JKW
< sup Z‘hk-hc,kueJ ‘

Osw<2mk=1

n n
= sup Z‘hk'hc,k‘z Z‘hk'hc,k‘s ne
O<sw<2mk=1 k=1

where

00

o= ma -y =l -l = w(f - PR

<[ - PRl =Iwi,.3
Therefore, if ¢=n[W]|..,, wehave

[h=h|,<ct

OEA.

(C-2)

(C-3)

(C-4)
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Table1l. Seledion d retained DWT coefficients for Identification and Residual tests

Index set WhitenessTest Rss
loc Colored 2.5452
l1c White 2.4135
l2c White 2.4081

Table2. Comparison d FIR Identification methods A-F

Method M SE;, (10°) Ress Ges
A 15.98 3.312 1.1189
0.8226 3.165 1.1188

C 2.0778 4.389 1.1232

D 0.1436 2.470 1.1245

E 0.7982 3.059 1.1189

F 0.6393 2.408 1.1187
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x  Equal sampling intervals

0 Varyingsamplingintervals

Figure 1. Typicd impulse resporse with deal-time and inverse resporse, with equal

sampling intervals (x) and varying sampling intervals (0)
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Figure 2. Example of discrete wavelet transform
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Figure 4. FIR Coefficients of Prior model and Actual model to be identified
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Figure 6. FIR coefficient plots: (a) adual, A, B; (b) adual, C, D; (c) adual, E, F.
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