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Abstract. This paper contains a review of classical and recent works on the
anomalous skin effect in gas discharge plasmas. Recently, interest in this problem
has been generated by the introduction of inductively coupled plasma (ICP)
sources operating at low gas pressures (0.1–50 mTorr). The near-collisionless
operating regime corresponds to the conditions of the anomalous skin effect. The
skin effect governs not only the distribution of the electromagnetic field but also the
mechanism of electron heating and power absorption by the plasma. The finite
dimensions of the plasma and magnetic fields as weak as the natural geomagnetic
field play important roles under these conditions. The understanding of these
phenomena is far from complete. We draw upon advances in the physics of metals
(where the anomalous skin effect was discovered and thoroughly explored) to gain
insight into discharge plasmas where many interesting phenomena are yet to be
found.

1. Introduction

It is known that an alternating electromagnetic field is
damped within a conductor, and not only the field but also
the resulting electric current is concentrated near the surface
of the conductor. This is called the skin effect. We shall
consider the case when the field frequencyω is less than the
electron plasma frequencyωp. In simple cases, the nature
of the skin effect is determined by the relative magnitude of
three characteristic lengths: the skin depthδ, the electron
mean free pathλ, and the lengthv/ω which an electron
traverses during the field period (v is a characteristic
electron velocity) [1]. Although the skin effect depends
to some extent on characteristics of the conductor (such as
the electron distribution function), there are many features
common to all conductors. We shall compare phenomena
in gas discharges with those in metals where the anomalous
skin effect was discovered experimentally by London [2]
in 1940 and thoroughly explored afterwards. Nowadays,
considerable interest in this problem exists due to extensive
studies of low-pressure inductively coupled plasmas (ICPs)
where the anomalous skin effect plays an important role.

ICPs are weakly ionized plasmas with plasma density
n ≈ 1010–1012 cm−3, electron collision frequency with
neutralsν ≈ 107 s−1 (at argon gas pressure 5 mTorr),
and a near-Maxwellian electron energy distribution with
temperatureTe ≈ 5 eV [3]. For a typical driving frequency
ω = 8.5×107 s−1 (13.56 MHz) the inequalityω < ωp holds
true for plasma densitync > 2× 106 cm−3. The electron
mean free pathλ becomes comparable to the characteristic

size of plasma devicesL ≈ 10 cm at pressures of about
3 mTorr. The finite dimensions of the plasma must be
important for electron kinetics and the skin effect under
these conditions. In addition, magnetic fields as weak as
the natural geomagnetic field (≈0.5 G) may affect such
a plasma because the electron Larmor radiusrH becomes
comparable toλ at B ≈ 1 G.

The electron gas in metals obeys Fermi statistics [4].
For ordinary metals, in which the number of conducting
electrons is of the order of one electron per atom,
ωp ≈ 1015–1016 s−1. At the frequencies usually employed
in radio engineering (up toω = 1010 s−1), the condition
ω � ωp is satisfied within a large margin. In metals,
δ is usually small compared toλ (see table 1)†. Plasma
parameters in metals and in ICPs are compared in table I.
Moreover, the effective boundary of a discharge plasma
is not abrupt as in metals, but is formed by the shape
of the electrostatic potential in the discharge. While
electrons reflect specularly by the potential barrier at the
wall, reflections from the metal boundaries are to some
extend diffuse.

The theory of the skin effect in metals has been well
developed. Several new physical phenomena have been
reported for thin metal films. In particular, application
of static magnetic fields to the films has resulted in
a variety of finite-size and resonance effects [4]. In

† The calculation ofλ is one of the basic problems in the theory of
metals. One should consider electron collisions with (a) phonons (lattice
vibrations), (b) other electrons, and (c) impurity atoms and defects of the
lattice.
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Table 1. Plasma parameters in metals and in inductively
coupled gas discharges.

ne λ ωp v δ

(cm−3) (cm) (s−1) (cm s−1) (cm)

Metal 1022 0.1 1015 108 10−5

ICP 1011 10 1010 108 1

contrast, the skin effect in discharge plasmas is relatively
unexplored. In some respects, gas discharges are better
suited for basic studies of this effect compared to metals;
for instance, precise measurements of spatial distributions
of the electromagnetic fields can be performed in gaseous
plasmas by using magnetic probes. Recent interest in ICPs
generated by the development of new plasma technologies
has prompted further studies of the anomalous skin effect—
the mechanisms of electron heating and power absorption in
ICPs are closely related to the skin effect. This is another
subject where basic plasma research meets the world of
semiconductor manufacturing.

In what follows, we shall briefly describe classical and
recent works on the anomalous skin effect. We will draw
upon the advances made in the physics of metals to gain
insight into what one might expect to find in discharge
plasmas. This paper is an extention of a memorandum
compiled at the Plasma Processing Laboratory at the
University of Houston in June 1996 [5].

2. Electrodynamics of good conductors

The principal characteristic of a good conductor is the
high density of conducting electrons. In such a conductor,
the displacement current generated by the time varying
electromagnetic fields is small compared to the conduction
current, and the Maxwell equation (in a Gaussian system)

∇ ×H = 4π

c
j + 1

c

∂D

∂t
(1)

is reduced to the quasi-static equation

∇ ×H = 4π

c
j. (2)

Ampere’s law (2) defines the magnetic field which is
generated by external sources and by currents in the plasma
in the limit ω � ωp. It follows from (2) that∇ · j = 0, i.e.
the use of (2) corresponds to neglecting the time variation
of the space charge in the conductor. Faraday’s law

∇ ×E = −1

c

∂B

∂t
(3)

defines a solenoidal electric field which is induced by the
time-varying magnetic field. The difference betweenB
andH is unimportant for the nonferromagnetic materials
we consider. The determination of the field structure in the
conductor requires self-consistent solution of (2) and (3)
with the current densityj in the ‘plasma’ as a function of
the (yet to be found) fields.

In calculating the current density,j, we can have two
limiting cases. If the characteristic lengthδ (skin depth)
in which the field changes significantly is large compared
to the characteristic scalel describing the electron motion
(the shortest ofλ, rH , andv/ω), the relationship between
j andE is local

j = σ̂E (4)

whereσ̂ is the conductivity tensor. The skin effect is said
to be normal when Ohm’s law (4) holds true and there is
no temporal dispersion ofσ .

Another limiting case corresponds to the extreme
anomalous skin effect whenδ is small: δ � l. In this
case, the current density at a given point is a function
of the fields along the entire electron trajectories (non-
local case). However, only a small number of electrons
make a considerable contribution to the current density.
These are ‘glancing’ electrons which are reflected at small
angles (∼δ/λ) from the plasma boundary and thus spend a
considerable part of the field period within the skin layer.
The rest of the electrons escape the skin layer too rapidly
to make a considerable contribution to the current. The
separation of the electrons into two groups is useful in the
development of a qualitative theory of the anomalous skin
effect.

The phenomena which constitute the essence of the
anomalous skin effect were first noticed by London in 1940.
The qualitative theory of the effect is due to Pippard [6], and
the quantitative theory is due to Reuter and Sondheimer [7]
who considered the simple case of a semi-infinite metal with
no static magnetic field. Since that time, the anomalous skin
effect in metals has been thoroughly studied [4, 8].

Demirkhanovet al [9] were the first to experimentally
observe anomalies of the skin effect in a gas discharge
plasma. Their results stimulated many theoretical
and experimental works devoted to this effect [10–20].
Nonmonotonic profiles of the rf fields, finite-size effects,
and resonance phenomena were experimentally found and
explained in inductive discharges. The works [21–23]
were triggered by studies of microwave pinch discharges.
These theoretical works focused on the effects of the non-
sharpness of plasma boundaries and the role of static
magnetic fields. Recent interest in the field has been
generated by the application of low-pressure ICP sources
for materials processing. The near-collisionless operating
regime and the geometry of modern ICP sources are
historically unusual and have not been extensively studied
until recently. The anomalous skin effect is important
for ICP operation in this regime. While ICPs have
become widely used in practice, some basic questions about
their operation remain poorly understood. Among these
questions are the mechanism of electron heating, the role
of magnetic fields on electron kinetics, and the peculiarities
of the skin effect in a bounded plasma.

3. Skin effect in a semi-infinite plasma in the
absence of a static magnetic field

Let us consider the simple case of an electromagnetic wave
incident on a semi-infinite spatially uniform plasma with
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no static magnetic field. For any angle of incidence of
the wave, the problem becomes one dimensional and all
quantities depend only on the distancex from the surface.
The nature of the wave reflection from and absorption by
the plasma defines the tangential components of the electric
field Es

t and the magnetic fieldH s
t at the plasma surface

Es
t = ζ̂ [H × n]st . (5)

Here n is a unit vector normal to the surface and
the quantity ζ̂ = ζ̂ ′ + iζ̂ ′′ is called the surface
impedance† (which is a two-dimensional tensor in
electrically anisotropic media [4]). The real and imaginary
parts of ζ̂ determine the energy dissipated in the plasma
and the phase shift of the field resulting from the wave
reflection by the plasma, respectively. The calculation ofζ̂

requires knowledge of the current densityj induced in the
plasma by the electromagnetic fields of the wave.

3.1. Classical skin effect

When the thermal motion of electrons is neglected (cold
plasma), the relation between the current densityj and
the field E is given by Ohm’s law (4). Consider the
simplest case of an isotropic medium whereσ is a scalar.
According to (2)–(4), the damping of the electric field of a
monochromatic wave (all quantities varying as∝ exp(iωt))
in such a medium is described by the complex equation

d2E

dx2
= 4π iωσ

c2
E. (6)

In the general caseσ is a complex quantity accounting for
electron inertia. For realσ the amplitude of the electric
field decreases exponentially from the surface [24]

E = E0 e−x/δ cos(x/δ − ωt) (7)

with the skin depthδ given by

δ−1 = Re

(
4π iωσ

c2

)1/2

(8)

and the phase of the field is a linear function of the
coordinatex. In this case,Et = ζ [H × n]t not only
on the surface but throughout the entire half-space, and the
scalar plasma impedance is given by

ζ = (1+ i)
√
(ω/8πσ). (9)

The inequalityζ ′ > 0 ensures energy dissipation and must
always be satisfied.

If the collision frequencyν is independent of electron
energy, the conductivityσ is given by [25]

σ = nee
2

m(ν + iω)
(10)

wheree is the electron charge,m is the electron mass, and
ne is the electron density. Substituting (10) into (8) one
obtains the classical skin depth [10]

δ = δ0/ cos(ε/2) (11)

† This name is also given to the quantityZ = 4πζ/c.

Figure 1. Skin effect in a semi-infinite plasma with no
magnetic field. δ0 is defined by equation (12). The solid
line, corresponding to 3 = 1, is the boundary of the
anomalous skin effect.

where

δ0 = c

ωp

(
1+ ν2

ω2

)1/4

ε = tan−1 (ν/ω). (12)

At low frequencies,ω � ν, the skin depth isδn =
(c/ωp)

√
2ν/ω and the energy dissipation is due to

collisions. This is the normal skin effect (see figure 1). At
high frequencies,ωp � ω � ν, (the high-frequency region
in figure 1), the (collisionless) skin depth isδp = c/ωp and
the impedanceζ = iωδp/c is purely imaginary. The wave
is reflected from the plasma without energy dissipation.
In metals, the high-frequency region corresponds to the
infrared range of wavelengths [4].

If ν is a function of electron energy,ε, equation (10)
is replaced by the more general form [26]

σ = nee
2

m(νeff + iωeff )
(13)

where the effective frequenciesνeff and ωeff depend on
both ν(ε) and ω. Using (13) allows one to obtain the
thickness of the skin layer and the plasma impedance in
terms ofνeff andωeff .

3.2. Anomalous skin effect

When electrons move a distance comparable to the skin
depth during the field period, and do not collide in that
time, the conductivity becomes a function of the rf field
throughout the entire skin layer [6, 7]. The skin effect under
these conditions is said to be anomalous (see figure 1). In
the extreme anomalous case (a) neither the skin depthδ

nor the surface impedanceζ depend on the collision
frequencyν, (b) the dissipation of energy is present even
if ν = 0, (c) the damping of the field is characterized by
at least two characteristic lengths, and (d) the field profile
can be non-monotonic, and in some places the current can
even flow against the field.
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The qualitative theory of the anomalous skin effect
is due to Pippard [6]. Pippard suggested that the main
contribution to the skin current is made by ‘effective’
electrons moving almost parallel to the surface. The
velocity of these electrons forms angles less thanδ/λ with
the surface. The relative number of ‘effective’ electrons is
of the order ofδ/λ. The remaining ‘ineffective’ electrons
leave the skin layer too quickly and therefore the electric
field has little time to affect them. The concept of
separating electrons into two groups has proven to be useful
in the theory of the anomalous skin effect.

For a qualitative treatment, one can introduce the
effective conductivity of the skin layer

σeff = (δ/λ)κσ (14)

where σ is the static conductivity (ω � ν) and the
numerical constantκ ≈ 1, and use Ohm’s law (4). This
way one obtains the anomalous skin depth

δa =
(

c2λ

4πωκσ

)1/3

(15)

and the surface impedance

ζ = ζ ′ + iζ ′′ = 1+ i
√

3

2

(
ω2λ

4πcκσ

)1/3

. (16)

A rigorous calculation confirms these formulae and yields
κ = √π for a Maxwellian plasma [10]. Equations (15) and
(16) describe the principal features of the anomalous skin
effect: (a) the independence ofδa and ζ on the electron
mean free path becauseσ ∼ λ, (b) the dependence on
frequency in the formζ ∼ ω2/3 (in the normal skin effect
this dependence is given byζ ∼ ω1/2), and (c) the complex
nature ofζ (ζ ′′/ζ ′ = √3), whereas in the normal skin effect
ζ ′′ = ζ ′.

A quantitative approach requires solution of the
problem of propagation of a transverse electromagnetic
wave, when the induced current at a given point is
determined by the field distribution in the vicinity of the
point within an electron free path. For the first time this
problem was solved in [7] for a semi-infinite metal with
Fermi distribution of electrons. Weibel [10] extended the
theory to a gaseous plasma with a Maxwellian electron
distribution function (EDF). For specular reflection of
electrons at the plasma boundary, the problem is reduced
to the solution of an integro-differential equation

d2E

dx2
= iωω2

p

c2

∫ ∞
−∞

Kv((iω + ν)|x − x ′|)E(x ′) dx ′ (17)

where the kernelKv(α) for a Maxwellian distribution is

Kv(α) = 1

v
√
π

∫ ∞
0

1

ξ
exp(−α/vξ − ξ2) dξ. (18)

As the electron velocityv tends to zero (cold plasma),
Kv(α) tends to a delta function, and equation (17) is
reduced to equation (6) withσ given by (10). By a simple
change of scalez = |iω+ ν|x/v, equation (17) can be cast
in the form

d2E

dz2
= i3

∫ ∞
−∞

K(s|z − z′|)E(z′) dz′ (19)

Figure 2. The parameter 3 as a function of ω/ν. The
anomalous skin effect takes place in the frequency range
ω1 < ω < ω2.

where K(α) is the functionKv(α) for v = 1 and the
parameters3 ands are defined as

3 =
(ωpvT

c

)2 ω

(ω2+ ν2)3/2
(20)

s = i exp(−iε) and ε is given by equation (12). The
parameter3 is a fundamental measure of non-locality of
electromagnetic phenomena in plasmas [20]. Indeed, the
ratio of the effective mean free pathλeff = vT /

√
ν2+ ω2

to the classical (local) skin depth (11) isλeff /δ =
√
3

(for ω � ωp). The non-local effects are pronounced if
λeff exceedsδ (3 > 1), and they are small otherwise.
It is significant that the parameter3 becomes small both
for low and high frequencies and has a maximum at
ω ≈ ν (figure 2). It means that in both low- and high-
frequency cases the penetration of electromagnetic waves
into a plasma can be described as a classical skin effect.

The solution of equation (19) is found using Fourier
transforms

E(z) = −E
′(0)
π

∫ ∞
−∞

eikz dk

k2+ i3h(k)
. (21)

Hereh(k) is the Fourier transform ofK(z):

h(k) =
∫ ∞
−∞

K(|z|) e−ikz dz = 1

ik
Z(is/k). (22)

Z(ξ) is the plasma dispersion function (see for example
[27]) andE′(0) denotes dE/dz at z = +0. The solution
E(3, s, z) depends on the parameters3 and s or ε
(figure 3). Small values of3 correspond to the normal
case. Anomalies (e.g. non-monotonic field decay) begin to
be noticeable for3 > 1.

The surface impedanceζ = (iω/c)E(0)/(dE(0)/dx)
is a measure of the wave reflection and absorption by the
plasma. Using equation (21), one finds

ζ = −iωλeff
πc

∫ ∞
−∞

dk

k2+ i3h(k)
. (23)
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Figure 3. The amplitude of the electric field E as a function
of normalized depth z for different 3 and ν/ω = 1 [10].

Figure 4. Real part of normalized surface impedance as a
function of 3 and ε [10]. ε = 0 corresponds to the
collisionless case where 3 = (vTωp/cω)2, and
ε = π/2 corresponds to collisional case where
3 = (vTωp/cν)2ω/ν. The anomalous skin effect takes place
at 3 > 1.

The real part of the surface impedance is shown in
figure 4 as a function of3 for different degrees of plasma
collisionality ε. The real part of the surface impedance
does not vanish atν = 0 (see figure 4; curveε = 0) and
for the extreme anomalous case the dissipation of energy is
independent ofν (lines in figure 4 ‘converge’ for3� 1).

For3 > 1 it is impossible to describe the field profile
as a damped exponential wave (see figure 3). The field
profile is affected by two components of the current. One
is due to the ‘effective’ electrons which cause a sharp
decrease of the field within the skin layer. The other
is due to the ‘ineffective’ electrons. This component is
damped relatively slowly (asx−2). In view of such a
complicated form of the field, the concept of the penetration
depth does not have the same significance as for the normal
skin effect. The complicated field profile is caused by the
thermal motion of electrons. Electrons that have acquired
momentum from the field in the skin layer carry this
momentum into the interior of the plasma to a distance
of the order of the mean free path and generate a high-
frequency current on the way. Since the electrons escaping

into the plasma bulk acquire a much smaller amount of
energy from the field than the ‘glancing’ electrons and since
the current density is spread over a layer whose thickness is
not δ butλ, both the current density and the field in the bulk
are considerably weaker than they are in the skin layer and
decay to zero at a depth of the order of the electron mean
free path. Thus, even in the simplest case, the damping
of the field is characterized by two quantities (δ andλ) of
different orders of magnitude.

In a spatially inhomogeneous plasma, the shape of
the plasma boundary is governed by the profile of the
electrostatic potentialφ(x) at the boundary. A theory
for the anomalous skin effect in a plasma with a diffuse
boundary (φ(x) is not a square well) was constructed in
[21, 23].

4. The influence of a static magnetic field

The application of a static magnetic field gives rise to
several new physical effects [4]. Qualitatively, the role
of the magnetic field can be understood in terms of an
effective conductivityσeff . It is known that an electron
subjected to a static magnetic field moves along a helix of
radiusrH = mv⊥/eB whose axis is parallel to the magnetic
field. For a magnetic field along thez-axis, the conductivity
tensor in thebulk plasma is [25]

σ̂ =
 σxx σxy 0

−σyx σyy 0

0 0 σ

 . (24)

The field does not affect the longitudinal component of
the conductivity, σzz = σ . However, the transverse
components of the conductivityσxx = σyy = σ/(1+ω2

H/ν
2)

decrease with increasingB and become very small for
ωH � ν: σxx = σyy ∼ σ(rH/λ)2.

The conductivity near thesurfacemay be quite different
from (24). Consider a magnetic field parallel to the
boundary. If electrons are scattered diffusively by the
boundary (typical for metals), momentum is lost in each
collision with the boundary. Therefore, the effective
collision frequency of electrons in a layer of thicknessrH is
equal to the gyrofrequencyωH � ν. Consequently, within
the surface layer, we have for largeB

σsxx ≈ σ
rH

λ
� σ

( rH
λ

)2
= σxx. (25)

Thus the surface conductivity is larger than the bulk
conductivity. A considerable rise in the conductivity within
the boundary layer compared to the bulk conductivity
results in concentration of the current near the boundary,
a phenomenon known as thestatic skin effectin metals
[4]. In the case of specular reflection from the boundary
(typical for discharge plasma), collisions with the surface
do not lead to scattering. The electrons in the boundary
layer follow infinite paths and thesurfaceconductivity is
even larger, of the order of the bulk conductivity without
magnetic field. In any case, the principal contribution to
the total current is made by a surface layer of thicknessrH .

R5



V I Kolobov and D J Economou

The current practically vanishes atx > rH and the field
and current have different depths of penetration.

Analysing the influence of a static magnetic field
parallel to the boundary, we can distinguish two limiting
cases with respect to the frequency of the alternating field.

(1) When the frequency of the alternating field is
relatively low,ω � ν, the alternating field does not change
significantly during the timeν−1. Electrons spend different
times in the skin layer, depending on the angle at which they
enter the skin layer. The ‘glancing’ electrons, which are
the only ones of importance for the anomalous skin effect,
travel a path of length∼√rH δ during the field period. If√

rH δ � λ (26)

all ‘glancing’ electrons traverse the greatest possible
distance (of the order ofλ) in the skin layer without
suffering collisions. Thus, the magnetic field does not affect
the impedance.

When the magnetic field is increased that so that√
rH δ � λ (27)

although we still haverH � λ, the glancing electrons
traverse a path of the order of

√
rH δ � λ in the skin layer

and this reduces the conductivity by a factor of
√
rH δ/λ.

The relative number of ‘glancing’ electrons isδ/
√
rH δ.

Thus, the effective conductivity

σeff = σ
√
rH δ

λ

δ√
rH δ
= σ δ

λ
(28)

is of the same order as that given by (14) in the absence of
the magnetic field! If the magnetic field is parallel to the
surface the effective conductivity is larger than that given
by (28) by a factor equal to the number of times that an
electron returns to the skin layer during the timeν−1, i.e.
by a factor ofλ/2πrH :

σeff ≈ σ δ

2πrH
. (29)

Consequently, the impedance (16) has to be multiplied by
(λ/2πrH )−1/3

ζ(B) = ζ(0)
(

λ

2πrH

)−1/3

(30)

whereζ(0) is the impedance in the absence of a magnetic
field. In the low-frequency case, an electron repeatedly
entering the skin layer finds that the field is practically
constant.

(2) At relatively high frequencies,ω � ν, one has to
simply replaceν by iω in the calculations of the effective
conductivity. In this case, there is no dissipation of energy
in the absence of a boundary. However, ifωH < ω,
electrons can be continuously accelerated by the field and
a specific cyclotron resonance may occur.

It is well known that a free electron subjected to a
static magnetic field and a circularly polarized electric
field experiences a resonance atω = ωH . Due to strong

Figure 5. Electron trajectories in a magnetic field parallel
to the plasma boundary for δ � rH . Electrons passing the
skin layer congregate at a depth ≈2rH giving rise to a local
peak of current density there.

inhomogeneity of the electromagnetic field over distances
of the order of an orbit radius, appreciable resonance can
be observed only if an electron makes at least several
revolutions between two successive collisions. This means
the inequalitiesω � ν andλ > rH must be satisfied and
the skin depth must be of the order ofc/ωH . If the field
is inclined to the surface, practically all electrons escape
from the skin layer in the first revolution. If the field is
parallel to the surface, there are some electrons which do
not collide with the surface and return to the skin layer
after each revolution. In this case, the skin layer plays a role
completely analogous to the accelerating gap in a cyclotron.
If the return of electrons to the skin layer is synchronized
with the external high-frequency field and the frequencyω

is equal to or a multiple of the frequencyωH , electrons
are accelerated in the skin layer by a factorλ/2πrH . This
gives rise to a special type of cyclotron resonance known
as Azbel–Kaner resonance in metals. A similar resonance
has been recently discussed for a discharge plasma [28].

When a static magnetic field is parallel to the plasma
boundary, the damping of a high-frequency field is of
special nature. In a layer of thicknessδ, electrons
acquire directed velocity and give rise to a current
density j . Moving down along their orbit, the electrons
‘congregate’ again in a layer of thicknessδ at a depth
≈2rH (see figure 5). The current density has a local
maximum at that point and has opposite sign compared
to that in the skin layer. Therefore, if all electrons were
to move along orbits of the same radius, the ‘glancing’
electrons would give rise to peaks of the current and
electromagnetic field at a depthx = 2rH . Such peaks
would accelerate new electrons which have ‘glanced’ in
the layer at a depth 2rH , and this would be repeated at
4rH , etc. Due to the presence of orbits of different radiirH ,
only a small fraction of electrons ‘congregates’ at any given
depth and the amplitude of field spikes decreases rapidly
at each ‘stage’. The appearance of such field and current
peaks gives rise to several macroscopic effects which have
been unambiguously proven in metals [4]. The physical
origin of the field (current) peaks implies that they should
be observed any time when there is a mechanism selecting
a small fraction of electrons whose orbit-diameter scatter is
of the order of or less than the skin depth.

The theory of the anomalous skin effect in a plasma
with a diffuse boundary located in a magnetic field was
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developed in [22] and [23]. In [22], the static magnetic
field was parallel to the boundary. Consideration was
restricted to the extremely anomalous skin effect when the
skin depthδa was small compared to the average Larmor
radius of electrons and the thickness of the boundarya.
An integral equation for the electric field in the plasma was
obtained in the form

d2E

dx2
= i coth(πβ)

δ2
a

∫ ∞
−∞

exp

{
−−e[φ(x)+ φ(x

′)]
2Te

}
×K0

(
e|φ(x)− φ(x ′)|

2Te

)
E(x ′) dx ′ (31)

whereβ = (iω + ν)/ωH andK0(x) is a modified Bessel
function. Equation (31) differs from the similar equation
with no magnetic field [21] only by the factor coth(πβ).
This factor accounts for electron revolutions into the skin
layer with frequencyωH . Equation (31) was solved in [22]
for an exponential profile of plasma density at the boundary,
n(x) ∝ exp(x/a), for ln(a/δ) � 1. In this case the wave
attenuates strongly in the skin layer and does not reach the
region where the plasma density begins to deviate from
exponential. The real part of the surface impedance was
obtained in the form

ζ ′(B) = 2π2aω

c2

[
1− 2

π
tan−1

(
sin(2πω/ωH)

sinh(2πν/ωH )

)]
. (32)

Consider the dependence ofζ ′ on B. In the absence of a
magnetic field,

ζ ′(0) = 2π2aω/c2. (33)

For a weak magnetic field, whenωH � ν, the surface
resistance differs from its value without the magnetic field
by an exponentialy small oscillating addition

ζ ′(B) = ζ ′(0)
[

1− 4

π
e−2πν/ωH sin

2πω

ωH

]
. (34)

In the regionωH ≈ ω � ν, the surface resistance is a
periodic function ofω, and the ratioζ ′(B)/ζ ′(0) is closer to
being rectangular in shape the better the inequalityωH � ν

holds true (figure 6). The jumps of the resistance at
ω = (m + 1)ωH , wherem is an integer, are connected
to the Azbel–Kaner resonance, when an electron has the
same phase as the field after each revolution. The jumps
at ω = (m + 1/2)ωH occur because the phase difference
between the electron and the field is exactly reversed.
This is a ‘cyclotron antiresonance’ [22]. In the region of
stronger magnetic fields, for whichvT /a � ωH � ω, the
surface resistance does not depend on the magnetic field:
ζ ′ = (4πaω/c2) tan−1 (ν/ω). With further increase ofB,
the Larmor radius of electrons becomes smaller thanδ and
the conditions of the anomalous skin effect are violated.

The case of a magnetic field perpendicular to the
boundary was analysed in [23]. In this case, the insident
wave breaks into a sum of right and left circularly polarized
components which propagate independently of one another.
The interaction of the wave that rotates in the same direction
as the electrons in the magnetic field has a resonant
character at a field frequency close to the Doppler-shifted
cyclotron frequency of the electrons [8].

Figure 6. The ratio of surface resistance ζ ′(B) in a
magnetic field to its value at B = 0 for a semi-infinite
plasma with a diffuse boundary [22]. The static magnetic
field is parallel to the boundary.

5. Anomalous skin effect in bounded plasmas

The presence of a second boundary influences the skin
effect if the distance between the boundaries,L, satisfies
the conditionsL < λ, orL < δ. For metals this property is
called the size effect [29]. Application of a static magnetic
field B parallel to the boundary produces a very interesting
effect in thin metal films. If the thickness of the filmL
obeys δ � L � λ then the application of aB field
exceeding a critical valueBc confines all orbits so that
electrons return repeatedly to the skin layer. Consequently,
a kink in the derivative of the surface impedance with
respect to the magnetic field is observed atB = Bc. The
presence of field and current peaks discussed in section 4
results in resonant behaviour of the surface impedance
in thin metal films. Discontinuities in the behaviour of
the surface impedance are an unambiguous proof of the
existence of these peaks [4].

In discharge plasmas, the electromagnetic fields are
spatially inhomogeneous even in the absence of skin effect
(δ > L) due to the finite size of the coil producing the rf
fields or the influence of metallic boundaries. Thus it is
necessary to distinguish the field shielding by the plasma
from the effects of geometry. A typical gas discharge with
pronounced skin effect is an electrodeless ‘ring discharge’
invented more than a century ago [30] (figure 7). In this
discharge, a time-varying magnetic field,Bz, produced by
the rf current in the coaxial coil generates a solenoidal
electric fieldEθ which sustains a plasma. TheEθ field
vanishes on the discharge axis due to azimuthal symmetry.
The plasma is radially inhomogeneous due to the charged
particle flow to the wall, and a static space charge field
builds up to balance the escape rate of mobile electrons and
heavy ions. This field confines the majority of electrons in
the plasma. The trapped electrons are specularly reflected
by the potential barriers at the plasma–sheath boundaries.
The finite dimension of the plasma becomes particularly
important for electron kinetics when the characteristic
length (radius of the chamber) is comparable to or less than
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Figure 7. A sketch of an inductive discharge sustained by
a coaxial coil. A time-varying magnetic field Bz induces a
solenoidal electric field Eθ . The electrostatic potential φ(r)
confines the majority of electrons in the plasma.

the electron mean free path. In this case, the momentum
gained by electrons from the electromagnetic forces in the
skin layer is transferred by thermal motion to the opposite
layer where the momentum may lead or lag the phase of the
applied field, depending on the field frequency and transit
time of electrons. The finite-size effects and transit-time
resonances have been studied in a number of works.

5.1. Classical works on the anomalous skin effect in
discharge plasmas

Demirkhanovet al [9] were the first to measure a non-
monotonic distribution of the rf magnetic field in a toroidal
ring discharge. They explained the non-monotonic decay
of the field by the thermal motion of electrons transferring
rf current from the skin layer into the interior of the
plasma. Also they pointed out the possible influence of the
rf magnetic field and the finite dimensions of the plasma
on the nature of the skin effect. Their work [9] triggered
further studies of the anomalous skin effect in gas discharge
plasmas.

Weibel [10] extended the Reuter–Sondheimer theory
[7] for a semi-infinite uniform plasma with a Maxwellian
EDF. He found a non-monotonic distribution of the
rf electric field (see figure 3) and introduced the
fundamental parameter3 as a measure of non-locality of
electromagnetic phenomena in plasmas. He pointed out that
in the extreme anomalous case neither the skin depthδ nor
the surface impedanceζ depend on the collision frequency
and the dissipation of energy is present even ifν = 0.

Kofoid [11] compared the result of his measurements of
the anomalous rf magnetic field penetration in a cylindrical
inductive discharge with Weibel’s theory. He found fair
agreement with theoretical predictions and attributed the
major source of discrepancy to the effect of cylindrical
geometry and inhomogeneity of the plasma not accounted
for in the theory.

Reynolds et al [12] measured the penetration of
electromagnetic fields into a cylindrical plasma under

Figure 8. Axial profile of the amplitude and phase of the rf
magnetic field in a planar plasma slab. Plasma parameters:
2ω/�̄ = 1.5; 2ν/�̄ = 0.3; (a) L/δp = 4.0; (b) L/δp = 4.5 [13].
Here �̄ is the mean bounce frequency, L is the
half-thickness of the slab, and δp is the collisionless skin
depth.

conditions where the electron mean free path is comparable
with the plasma diameter, in the frequency range 0.1–
10 MHz. In their experiments, a mercury plasma was
sustained by a steady current. An rf magnetic field∼0.5 G
induced by a screened coaxial solenoid had negligible
influence on the plasma parameters. It was found that
the ratio of the amplitude of the alternating magnetic
field at the plasma boundary to that at the plasma axis
exhibits a maximum, particularly pronounced at a critical
frequency of 4.5 MHz. This behaviour was attributed to
the thermal motion of electrons, with the critical frequency
being related to the transit time for electrons crossing the
tube diameter.

Blevin et al [13] developed a kinetic theory for the
penetration of an electromagnetic wave into a planar plasma
slab. They considered electromagnetic fields produced by
two opposite current sheets placed atx = ±L (see next
section where the main results of this theory are outlined).
Solution of a coupled set of Boltzmann and Maxwell
equations revealed pronounced resonance phenomena in
the attenuation of the field atω ≈ �̄, where �̄ is the
bounce frequency of electrons with a mean velocityvT .
Non-monotonic distribution of the amplitude of the rf
magnetic field and significant variations of the field phase
with position were found. When a minimum of|B(x)| is
particularly pronounced, there is an abrupt phase change
of ≈π corresponding to the magnetic field reversal at the
position of the minimum (see figure 8).

In [14] the theory was extended to a cylindrical
plasma with an electrostatic potential of the formφ(r) =

R8



Anomalous skin effect in gas discharge plasmas

Figure 9. The ratio |B(R)/B(0)| of the amplitude of the rf
magnetic field at the plasma boundary to that on the axis
for the first resonance [17]. Points—experiment in a
cylindrical plasma, solid line—results of the kinetic theory
for a planar plasma slab at ν/�̄ = 0.3; dashed line—‘cold
plasma’ approximation.

−(m/2e)�2
0r

2 which corresponds to a Gaussian shape
of electron density,n(r) ∝ exp(−r2/a2) with a width
a = vT /�0. The electron bounce frequency in such a
parabolic potential well,�0, is independent of electron
energy. Resonant phenomena similar to those in [13] were
found atω equal to even multiples of�0, in contrast to the
planar geometry where resonances occur at odd multiples
of �̄. Experimental measurements of the radial profile of
the magnetic field were also performed. The comparison
of experimental measurements of the magnetic field with
calculation results revealed qualitative agreement. The
quantitative discrepancies were attributed to the differences
of the potential profiles in the theory and the experiments.

A comparison of theory with experiments was also
given in [17]. Experiments were performed in a
cylindrical tube 150 cm long with radiusR = 4 cm
containing mercury vapour at pressures 0.1–1 mTorr.
The alternating fields were produced by rf current in a
coaxial screened solenoid. The azimuthal electric field
induced by the time-varying magnetic field was small
compared to the axial dc electric field maintaining the
plasma. The amplitude and phase of the magnetic field
were measured by magnetic probes. Figure 9 shows the
main results. The penetration of electromagnetic fields
exhibits sharp resonances at particular values of electron
density, excitation frequency, and plasma radius. The first
resonance (shown in figure 9) agreed well with the plasma

Figure 10. Radial distributions of the amplitude of the rf
magnetic field, Bz (r) (arbitrary units) in a cylindrical plasma
with a Gaussian profile of the plasma density,
n(r) ∝ exp (−r2/a2) with a = vT /�0 for different values of
a/δp (numbers near the curves). The plasma parameters
correspond to ωH = �0 = 2ν and ω/ν = 4 [15].

Figure 11. The radial distribution of the rf current density
(arbitrary units) in a cylindrical plasma with a Gaussian
profile of the plasma density, n(r) ∝ exp (−r2/a2), where
a = vT /�0, for different values of ω/�0. The rf electric field
is directed along the axis of the cylinder [16].

slab theory. The experimentally found parameters of the
second resonance (not shown in figure 9) did not agree with
the predictions of the theory, for reasons that were unclear.
Additional experimental measurements and attempts to fit
the experimental data to the theory [14] were reported in
[18].

Storer and Meaney [15] included an axial static
magnetic field in the theory of the anomalous skin effect in a
cylindrical plasma. They pointed out that in the presence of
a static magnetic field, it is necessary to consider the radial
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Figure 12. The radial distributions of the amplitude (a) and phase (b) of the rf magnetic field for different driving frequencies
in a cylindrical argon plasma. Plasma parameters: 10 mTorr, ne = 3.6× 1012 cm−3, Te = 2.1 eV [19].

electric field in addition to currents and electric field in
the azimuthal direction. In the cold-plasma approximation,
the fields adjust themselves so that the static magnetic field
does not affectEθ . However, even for the cold plasma, the
static magnetic field results in a non-zero component of the
electric field in the radial direction. Recently, this point was
raised in [31]. Storer has found that even a small change in
the static magnetic field may lead to complex redistributions
of the alternating fields when the Larmor radius of the
electrons is comparable to the size of the plasma (figure 10).
The anomalies in the radial distribution of the rf magnetic
field are even more pronounced than without a static field.
There can be considerable enhancement in the field on the
axis (see figure 10). No experimental data were available
to compare with the theory.

In [16] the theory of the anomalous skin effect in a
bounded cylindrical plasma was extended to the case of an
rf electric field parallel to the axis of the column. This
situation is complimentary to the aforementioned case of
the azimuthal electric field. Similar resonance phenomena
were found in this case as well. Figure 11 shows the relative
magnitude of the current density profiles for various values
of ω/�0. The anomalous current in the centre appears at
ω/�0 = 1.5. Two current layers are seen atω/�0 = 2.0
andω/�0 = 2.5. The phase of the current density at the
centre differs from that at the edge by aboutπ , i.e. the
current at the centre is in the opposite direction to the local
rf field. No experimental data were presented in [16].

Systematic experimental measurements and comparison
with available theories were performed by Joye and
Schneider [19] in a cylindrical argon plasma with and
without static axial magnetic field. The driving frequency
varied in the interval 0.32–14 MHz, and the plasma density
was between 1012 and 1013 cm−3 in a tube of radiusR =
4.7 cm at a pressure of 10 mTorr. Typical experimental

Figure 13. The radial distributions of the amplitude of the rf
magnetic field in a cylindrical argon plasma. Dotted lines
show experimental data for p = 10 mTorr, average plasma
density n = 4.2× 1012 cm−3, and Te = 2.1 eV. Solid lines
are calculations according to the Sayasov theory for
ne = 3× 1012 cm−3, ν = 4× 107 s−1 [19].

results are shown in figure 12. It is seen that an off-axis
minimum of the magnetic field is observed at a particular
driving frequency. This local minimum vanishes both at
low and high frequencies. Also, an abrupt change of the
field phase takes place in the position of the minimum
(figure 12(b)). The Sayasov theory described below fits the
data best (see figure 13). The influence of a static magnetic
field,B0, is illustrated in figure 14 for a frequency 3.5 MHz.
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Figure 14. Radial distributions of the amplitude and phase of the rf magnetic field in a cylindrical argon plasma for different
values of an axial static magnetic field. Plasma parameters: 10 mTorr, ne = 3.4× 1012 cm−3, Te = 2.1 eV, ω/2π = 3.5 MHz
[19].

The off-axis minimum of|B(r)|, observed without static
magnetic field, gradually disappears with an increase of
B0. A field as weak asB0 = 3 G already modifies the
position of the local minimum (this field corresponds to
ωH/2π = 8.4 MHz, rH = 1.6 cm). The off-axis minimum
disappears atB0 = 9 G whenrH = 0.53 cm. The effect
of the static magnetic field is more pronounced when the
fundamental parameter3 reaches a maximum (figure 2).

Sayasov [20] developed an analytic theory for the skin
effect in a cylindrical plasma under conditionsδ � R,
λ � R which are frequently satisfied in experiments.
This theory will be briefly described in the following
section. A comparison of the theory with the experiments
given in figure 13 demonstrates a fairly good agreement.
The remaining discrepancies can be attributed to the
approximation of a rectangular potential profileφ(r)
employed in the theory.

The theory of the anomalous skin for an arbitrary profile
of φ(x) was developed in [21–23]. To our knowledge, this
theory has not been compared to experiments yet.

The classical works on the anomalous skin effect
described above pay little attention to the analysis of
electron heating. The influence of the rf magnetic field
on electron dynamics is ignored. Theory is restricted to
the linear case and to conditions when electron collisions
with neutral gas species are responsible for randomizing the
electron motion. Under these circumstances the effect of
the rf magnetic field can be neglected. The self-consistent
nature of a discharge is frequently ignored; the electron
distribution function is assumed to be Maxwellian with
electron temperature being an input parameter. In the
next section we shall describe in more detail the available
theories of the anomalous skin effect in bounded discharge
plasmas.

5.2. Basic theories

Following [13], consider the electromagnetic fields
produced by two symmetric current sheets placed at
x = ±L. Assume that all quantities vary with angular
frequencyω, the magnetic field,Bz(x) = (c/iω) dEy/dx
is symmetric and the electric fieldEy(x) is antisymmetric
aboutx = 0:

Ey(x) =
∑
n

αn sin
[πnx

2L

]
. (35)

Here the summation extends over odd values ofn. An
electrostatic potential forms a rectangular potential well
with sharp boundaries (thin sheaths) atx = ±L specularly
reflecting electrons. The electrons reflected from the
boundaries can be regarded as entering the plasma from
|x| > L. In such a way the problem is reduced to that for an
infinite plasma with spatially periodic fields (see figure 15).

The EDF is approximated as the sum of a time-
independent isotropic partf0(ε) and an oscillating part,f1.
If the amplitude of the applied field is small, the linearized
Boltzmann equation can be used to calculatef1. Neglecting
the effect of the rf magnetic field on electron motion, one
obtains

f1 = −evy ∂f0

∂ε

×
∑
n

αn
(iω + ν) sin(πnx/2L)− n� cos(πnx/2L)

(iω + ν)2+ (n�)2
(36)

where� = πvx/2L is the bounce frequency of an electron
with velocity vx . Equation (36) indicates that atν � ω,
f1 becomes anomalously large for resonance electrons for
which the bounce frequencies satisfyω = n�. Assuming a
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Figure 15. Collisionless electron motion in a plasma slab is
identical to the motion in an infinite plasma with spatially
periodic fields. With neglect of the rf magnetic field, velocity
kicks are in the direction of the electric field (y-direction)
and the energy along the x-axis, εx , remains constant (top).
Accounting for the rf magnetic field results in velocity kicks
in the x-direction and in a change of εx (bottom).

Maxwellian distribution forf0(ε), the current density can
be expressed in the form [13]

jy(x) = − inee2

mvT

∑
n

αn

(πn/2L)
sin(πnx/2L)Z(ξ/n). (37)

Here Z(ξ) is the plasma dispersion function,ξ = (iν −
ω)/�̄, and�̄ = πvT /2L is the mean bounce frequency for
electrons with the most probable speedvT = (2Te/m)1/2.
The solution of Maxwell’s equations with the current
density (37) gives forω � ωp the Fourier coefficients

αn = − 2LiωB0 sin(nπ/2)(π/2)−2

n2+ (2Lωp/πc)2[ωZ(ξ/n)/n�̄+ (L/Reff )2]
(38)

whereB0 is the amplitude of the magnetic field atx = ±L.
Bearing in mind a later comparison with experiments for
radially inhomogeneous plasma, we have added a term,
(L/Reff )

2, which would appear in the denominator of the
solution to a two-dimensional cylindrical problem,Reff
being an effective radial scale. The non-symmetric case
is treated in [8] and [46].

Using these results, the surface impedance of the
plasma slab (Reff →∞) can be found in the form

ζ = iω

c

E(L)

E′(L)
= 8iωL

π2c

×
∑
n

1

n2+ (2Lωp/πc)2(ωZ(ξ/n)/n�̄)
. (39)

In limiting cases, this expression can be simplified. At
L � c/ωp, one obtains the surface impedance of a slab
without plasma

ζ = iωL

c
. (40)

Figure 16. Spatial distributions of the amplitude and phase
of the rf magnetic field in a planar slab for 3 = 3.7, ω/ν = 5,
ε = 15◦. Solid lines are calculated according to
equation (35), dotted lines are calculated using the
formula (43) [20].

Figure 17. The real and imaginary parts of the surface
impedance of a plasma slab as functions of δa/L calculated
according to equation (39). The plasma parameters are:
ν/ω = 0.01, R = 4 cm, ω = 8.5× 107 s−1, Te = 5 eV.

In the ‘cold-plasma’ approximation (vT = 0) using the
asymptotic expansionZ(ξ) ≈ −1/ξ for |ξ | � 1, one
obtains (see, for example, p 44 of [32])

ζ = iω

ωp

√
ν + iω

iω
tanh

[
ωpL

c

√
iω

iω + ν
]
. (41)

This result can be obtained alternatively [33] by solving
equation (6) withσ given by (10). For a thick plasma slab,
when λeff � L and δ � L, the theory should give the
results of section 3.2 for a semi-infinite plasma.

Sayasov has shown that the series in (35) allows
summation by the method of complex integration. At
3 > 1, the distribution of electromagnetic fields in the
plasma slab can be represented as a superposition of three
fundamental modes

B(x) ≈ B0

3∑
1

An
cos(knx̃)

cos(knL)
(42)
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where x̃ = x/L, k1, k2, and k3 are the three complex
roots of the equationD(k) = k2 + 3Z(is/k)/k = 0,
and An = kn/D

′(kn) where the prime refers to the first
derivative. For3� 1, the two rootsk2 andk3 are located
symmetrically relative to the imaginary axis, and the field
profile becomes particularly simple

B(x) ≈ B0

3

[
coshkx̃

coshk
+ 2 Re

cos(k eiπ/6x̃)

cos(k eiπ/6)

]
. (43)

Here k = π1/63L/λeff . Equation (43) reproduces
the essential features of the complete solution (35)
(see figure 16).

In the limit L � λeff , Sayasov obtained a simple
expression for the surface impedance†

ζ = 4

33/2

ωλeff

c2

[
eiπ/3+ 4i

3π1/22
ei(π/6−ε) + 33/2

4π

(
e−iε

2

)2

× ln

[
γ

(
e−iε

2

)2]]
(44)

whereγ = 0.577 is Euler’s constant and2 = π1/631/3.
For λ/δp � 1, this expression reproduces fairly well
Weibel’s results shown in figure 4. According to (44), the
maximum value of Reζ for λ/δp → ∞ is 0.123vT /c at
ω = ωmax = 0.721ν. Thus, for the anomalous skin effect,
the energy absorbed by the plasma, is larger as compared
with the normal case by the factor(vT /c)/(ν/ωp) = λ/δp
[20].

In figure 17, the real and imaginary parts of the surface
impedance (39) are plotted versusδa/L in the collisionless
case,ν = 0, for ω = 8.5×107 s−1 (13.56 MHz). It is seen
that the real part of the impedance is much smaller than the
imaginary part, i.e. the effective resistivity of the plasma
slab is small compared to its inductance. The electrons
simply oscillate in the rf electric field without gaining much
net energy. Atδa/L � 1 (the high-density limit) the ratio
of the real and imaginary parts approaches a constant value.
At δa/L > 1 the impedance corresponds to that of a slab
with no plasma (40). The maximum of the real part, Reζ

as a function ofδa/L, defines the optimum conditions for
power transfer to the plasma. The maximum energy which
can be absorbed by the plasma always remains small, since
vT � c.

The theory of the anomalous skin effect in a plasma
slab with diffuse boundaries was developed in [22]. It
was assumed that the alternating field does not penetrate
deeply into the interior of the plasma and is essentially
attenuated at a distancea � L from the boundary. Under
these conditions, it is sufficient to know the potentialφ(x)

only at the tail ofne(x) since low-energy electrons, moving
with conservation of total energy, do not penetrate into the
skin layer. The authors assumed that the electron density
decays exponentially at the boundary of the plasma. For
this case, the equation for the electric field is cast in the
form (31) with the only substitutionβ = (iω+ ν)/�̄. This
expression forβ differs from the one used in equation (31)
in that the Larmor frequencyωH is replaced by the bounce

† Up to terms of the order of2−2 this expression coincides with
equation (22) in [10].

frequency�̄. Thus, equation (32) can be used to describe
the surface impedance of the slab. In particular, it follows
from equation (32) that the surface resistance is a periodic
function of ω in the regionω ≈ �̄ � ν. This is a
size effect. Indeed, in a plasma bounded on one side, an
electron reflected from the boundary moves into the interior
of the plasma until it collides with another particle. In
the presence of a second boundary, an electron bounces
between the two boundaries and visits the skin layer with
a frequency�̄. The surface resistance depends on phase
correlations between succesive electron interactions with
the field.

For a thin plasma slab, for whichδa ≈ L, it is necessary
to know the potentialφ(x) in the entire region of electron
motion. The caseφ(x) ∝ |x| was considered in [22].

5.3. Cylindrical case

The influence of boundary curvature on the skin effect
is conveniently investigated with cylindrical samples.
Evidently, the result depends on the relation between the
cylinder radiusR, the electron mean free pathλ and the
thickness of the skin layerδ. Meierovich [34] considered
the caseλ � R. The electric field vector was parallel to
the axis of a cylindrical conductor with a sharp boundary at
r = R. For specular reflection of electrons at the boundary,
the Maxwell equation forEz was obtained in the form

d

dρ
ρ

dEz
dρ
= α

∫ 1

0
K(x, x ′)Ez(x ′) dx ′ (45)

whereρ = r/R, the kernelK(x, x ′) is given by

K(x, y) =
∫ ∞

0
J0

(
k
√

1− x2

x

)
J0

(
k
√

1− y2

y

)
dk

(46)
and the only parameter,α = (Rωp/c)iω/(iω + ν) is
determined by the ratio of the field penetration depth to the
radius of the cylinder. In the case of a strong skin effect,
α � 1, equation (45) can be simplified and the surface
impedance obtained in the form

ζ ≈ 4π

c

[(
ω

ωp

)4
ωR

c

(
1+ ν2

ω2

)]1/5

× exp

[
i

(
π

2
− tan−1 ν

ω

)]
. (47)

This dependence is essentially different from the case of a
planar plasma slab. In particular, the dependence on the
cylinder radius is relatively weak. In [35] the theory was
further developed to include a static magnetic field directed
along the axis of the cylinder.

Sayasov [20] considered another limitλ � R, δ �
R, with a rectangular potential wellφ(r). The axial rf
magnetic fieldBz and azimuthal electric fieldEθ were
assumed to be generated by a cylindrical coil wrapped
around the cylinder. It was shown that, similar to the planar
plasma slab, the distribution of electromagnetic fields in a
cylindrical plasma can be represented as a superposition of
three fundamental modes

B(r) ≈ B0

3∑
1

An
J0(knρ)

J0(kn)
. (48)
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It is just the interference of these modes that leads to non-
monotonic spatial distributions of the fields observed in the
experiments (see figure 13). The analytical solutions enable
one to explain peculiar features in the spatial distributions
of the fields. For instance, the off-axis minimum of
|B(r)| appears only at particular values ofω ≈ ωmax and
vanishes for low and high frequencies. At this frequency
ωmax = ν/

√
2 the fundamental parameter,3, reaches a

maximum as a function ofω (see figure 2).

6. Recent results

Recent interest in the anomalous skin effect has been
generated by rediscovery of inductive discharges for
semiconductor manufacturing [36]. Due to their relatively
simpler design, low-pressure inductively coupled plasma
(ICP) sources are considered as prime candidates for
manufacturing ultra-large-scale integrated circuits. The
ICP tools are capable of producing high-density plasmas
at pressures as low as 0.5 mTorr. In a typical case the
plasma is sustained by the rf fields generated by alternating
current in a planar coil placed on top of a cylindrical
chamber. These fields are spatially inhomogeneous even
in the absence of a skin effect, due to the finite sizes of
the coil and the chamber. For typical plasma densities the
field shielding by the plasma is noticeable as well. The
self-consistent nature of the discharge makes its modelling
a formidable task. Some basic questions remain poorly
understood, and in many cases empirical approaches to
ICP source design predominate. There is a need for
better understanding of the discharge physics to facilitate
computer-aided design of plasma sources.

Turner [33] solved numerically Maxwell’s equations
for a plasma slab using particle-in-cell/Monte Carlo (PIC-
MC) simulation of electrons to calculate the rf current
density. Our calculations of the surface impedance under
identical conditions using equation (39) reproduce Turner’s
results for ReZ. It is seen in figure 18 that for the
considered discharge conditions, the plasma resistivity is
small compared to the inductance, i.e. electrons simply
oscillate in the field without gaining much net energy.
Turner also found by PIC simulations that the electron
current is not confined to the skin layer but spreads
throughout the entire gap [37]. He suggested a modification
of the fluid description of electrons that allows for such a
diffusive spreading of the current and reproduces the PIC
simulation results. Figure 19 shows our calculations of the
electric field and current density for identical conditions
using the formulae of [8] and [46]. Although a noticeable
‘current diffusion’ does take place, it is not so extensive as
reported in [37]. Also, it is worth noting that the influence
of the rf magnetic field on electron motion was neglected
in Turner’s simulations that can modify the heating rate in
near-collisionless regimes.

Vahedi et al [38] developed an analytic model of
power deposition in ICP sources. The power deposition
was calculated using an expression [39] for the surface
impedance that corresponds to the classical expression for
ζ obtained in [10] for a semi-infinite spatially uniform
Maxwellian plasma. It was implicitly assumed that

Figure 18. The real and imaginary parts of the surface
impedance Z = (4π/c)ζ for a plasma slab, shown as
functions of ν/ω. The plasma parameters are:
ne = 1011 cm−3, Te = 5 eV, L = 4 cm. The dashed lines are
the cold-plasma result.

Figure 19. Axial distributions of amplitudes and phases of
the rf electric field (solid lines) and current density (dashed
lines). The discharge conditions are the same as in
figure 18, ω/2π = 13.56 MHz, ν = 0.

electrons ‘forget’ the field phase due to collisions with
neutrals, so that any effects of finite size of the plasma
could not be predicted.

Godyak and Piejak [40] have performed precise
measurements of the rf magnetic fields in a weakly
collisional cylindrical ICP driven by a planar coil. The
spatial distributions of the rf electric field (figure 20(a))
and electron current density (figure 20(b)) found from these
measurements are nonmonotonic. The phases of the field
and current change substantially with position so that the
power absorption,j ·E, may be negative in the plasma bulk
where the current phase differs from the phase of the local
electric field by more thanπ/2. For comparison, figure 21
shows the results of our calculation using the formulae of
[8] and [46] for the same conditions. Due to the finite size
of the coil in [40] the rf field decays exponentially with a
characteristic lengthReff = 2.4 cm even in the absence of
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the plasma. In our calculations, this effect was taken into
account by introducing the termL/Reff in the formulae of
[8] and [46], similar to equation (38). We did not expect
a quantitative agreement with the experiment since the
radial electron motion is not accounted for in equation (36)
for the EDF. However, qualitatively, some experimentally
observed phenomena can be described by the simple plasma
slab theory. In particular, the spatial profiles of the field
amplitude and phase demonstrate similar behaviour to that
observed experimentally. A sudden jump of the field phase
found in [40] does occur in our calculations at plasma
densitiesne ≈ 2× 1011 cm−3, twice that reported in [40].
However, the theory does not reproduce the distribution
of the current density observed in [40] as accurate as the
fields. Better agreement for current is obtained using higher
ω in calculations. Detailed comparisons require accurate
solution of the two-dimensional problem.

Some basic questions on ICP operation in the near-
collisionless regime require better understanding. The
first question concerns the mechanism of electron heating.
Kaganovich et al [41] have pointed out that the finite
dimension of the plasma becomes very important for
electron heating in the near-collisionless regime. In a
plasma slab geometry, collisionless heating (atν = 0) must
be absent if the influence of the rf magnetic field on electron
motion is neglected. This happens because theEy field
changes only thevy component of the electron velocity
while thevx component remains unaffected (see figure 15,
top). As a result, the bounce frequency� is constant
and subsequent electron interactions with theEy field are
strongly correlated. Thus,vy simply oscillates in time
and electrons gain no net energy from the field. On the
other hand, resonance electrons (withω = k�) can make
considerable contribution to the collisional heating (ν 6= 0)
since theirvy excursions are quite large and even rare
collisions can produce considerable heating.

The second question concerns the influence of the
rf magnetic field on electron kinetics and skin effect.
Although the possible influence of the rf magnetic field
on the anomalous skin effect in inductive discharges
was pointed out more than 30 years ago [9], most of
the currently used ICP models have ignored this effect.
Cohen and Rognlien have recently shown [42] that the
Lorentz force can greatly affect the electron motion in the
collisionless skin layer. Since the canonical momentum
py = mvy − eAy(x, t) is a strict invariant of the
collisionless electron motion (Ay is the vector potential
of the magnetic field), the Lorentz force transforms avy
kick into a vx kick (see figure 15, bottom). Consequently,
the electron bounce frequency in a plasma slab changes
after each kick and collisionless electron heating becomes
possible under certain conditions [41]. Gibbons and Hewett
[43] performed PIC simulations of a collisionless ICP
accounting for the rf magnetic field. The EDF was assumed
to be Maxwellian. They found that for a planar case
both components of electron velocity (vx and vy) were
affected by collisionless heating (onlyvy would have
been affected if the magnetic field were not included).
Collisionless heating appeared directly in these simulations.
The calculated surface impedance from the PIC simulations

Figure 20. Experimental distributions of the rf electric
field (a) and current density (b) in an ICP driven by a planar
coil for different powers absorbed in the plasma [40]. Peak
plasma densities were n0 = 2, 3.8, 6.5, 11× 1010 cm−3 as
power was increased, respectively. Discharge conditions:
argon, p = 1 mTorr, ω = 4.26× 107 s−1, Te = 5.6 eV,
L = 10.5 cm. The phases refer to the phase of the rf
electric field in the absence of plasma.

was found in good agreement with the results of a linear
kinetic theory for a semi-infinite plasma. No spatial
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Figure 21. Amplitudes and phases of the rf electric field and current density in a plasma slab using [8] and [46] for discharge
conditions similar to figure 20. Plasma densities ne = 2, 6.5, 11, 20× 1010 cm−3 for dashed, dash-dotted, dotted and bold
dotted lines, respectively. Solid line shows the electric field distribution in the absence of plasma. Other parameters:
ν = 8× 106 s−1, Reff = 2.4 cm, ω = 4.26× 107 s−1, Te = 5.6 eV, L = 10.5 cm.

distributions of the rf fields or currents were reported in
[43].

Kolobov et al [44] have modelled the electron kinetics
in a weakly collisional cylindrical ICP for a given
distribution of the fields. Heating was described in terms of
the energy diffusion coefficient,Dε = 1ε�9, the product
of a single energy kick in the skin layer,1ε, bounce
frequency�, and a function9 which describes the phase
correlations between successive kicks. Figure 22 shows
function9 for the ‘hybrid’ heating regime. In this regime,
the place where electrons interact with electromagnetic
fields and the place where randomizing collisions occur are
spatially separated. Sharp peaks of9 at certain values
of ω/� in the weakly collisional regime correspond to
the bounce resonances discussed above. It was shown in
[44] that averaging ofDε over angles in velocity space
diminishes the resonance effects in a cylindrical plasma.
The EDF was found from a linearized Boltzmann equation
and from a dynamic Monte Carlo simulation taking into
account the influence of the rf magnetic field and finite
dimensions of the plasma on electron kinetics. The depth
of the potential well that traps the majority of electrons in
the plasma was calculated self-consistently with the EDF
for a wide range of pressures and driving frequencies. The
role of the rf magnetic field and finite-size effects on heating
and power deposition was the main focus of that work.

The role of the rf magnetic field on the skin effect
becomes more important with a decrease of the field
frequencyω. If we assume that a similar electric field is
necessary to sustain a discharge at different frequencies,
then a larger magnetic field must be created at lower
frequencies. AtωH � ω the rf field can be treated as
quasi-static. According to section 4, a static magnetic field

Figure 22. The function 9 which describes phase
correlations between successive electron interaction with
the rf fields in a thin skin layer. Transit-time resonances are
observed in the near-collisionless regime (ν � �) at
ω = k�, where k is an integer and � is the electron bounce
frequency.

reduces the transverse component of the conductivity tensor
in the plasma bulk by a factor(rH /λ)2 compared to its
value atB = 0. Qualitatively, a decrease ofσeff can
result in anomalously large penetration of the field when the
magnetic field is accounted for in the analysis. However,
as we saw in section 4, the conductivity in the skin layer
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is of the order of the bulk conductivity with no magnetic
field. In any case, one should expect that accounting for
the rf magnetic field in the theory can substantially modify
the profiles of the fields.

Tuszewski [45] has measured the penetration of the rf
magnetic field in a low-pressure (5–50 mTorr) cylindrical
ICP (R = 16.5 cm) driven by a coaxial coil at the relatively
low frequency ofω/2π = 0.46 MHz. He found enhanced
penetration of the field compared to predictions of the
classical models and attributed this effect to a reduction
of the plasma conductivity due to the influence of the
rf magnetic field on electron motion. Qualitatively, this
reduction takes place when the average gyrofrequencyωH
exceeds the angular frequencyω and collision frequencyν.
However, no quantitative kinetic calculations have yet been
reported. The work in [46] is a good step in this direction.

In conclusion, we believe that many interesting
phenomena inherent to the anomalous skin effect in metals
are yet to be found in gas discharges. On the other hand,
new effects associated with the nonlinear self-consistent
nature of gas discharges may be discovered. Among the
most important unresolved problems is the influence of
the rf magnetic field and of externally applied magnetic
fields on the skin effect and collisionless electron heating
in bounded plasmas.
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