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Mass transfer by natural and forced convectlon in

open cavmes
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Abstract—Time-dependent mass transfer by natural convection in two-dimensional open cavities is studied
using the finite element method. Emphasis is placed on a system simulating selective chemical etching of thin
solid films for microelectronic device fabrication. Time-dependent local and spatially-averaged Sherwood
numbers are reported for a Schmidt number of 10%, cavity aspect ratios (depth: width) of 1:4, 1:1, and
2:1, and for Rayleigh numbers of up to 10°. The flow and concentration fields are symmetric at early
times. However, symmetry breaking and oscillatory flows occur at later times. The formation of plumes
result in effective communication between the external “fresh’ etching solution and the ‘contaminated’
solution within the cav1ty, especially for deep cavities which are otherwise difficult to access. Forced
convection mass transfer is also studied for Peclet numbers of up to 10%. When compared to forced
convection, natural convection resulted in one order of magnitude better mass transfer in a 2:1 cavity.
The results have important implications for deep anisotropic etching of thin solid films and other related -
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1. INTRODUCTION

NATURAL convection in cavities is encountered in a
variety of engineering problems and has received con-
siderable attention in the literature {1]. In particular,
natural convection in closed cavities has been studied
extensively both theoretically and experimentally
[2—4]. However, natural convection in open cavities
or partial énclosures has received much less attention
[5, 6]. This may be due to the complex interaction
between internal flows and external conditions. In
contrast, forced convection heat or mass transfer in
open cavities has been studied to a great extent [7, §].
The focus of the present work is an application of
mass transfer by natural and forced convection in the
manufacture of microelectronic devices.

Wet chemical etching of thin solid films using a
photoresist mask (Fig. 1) is widely employed in the
microelectronics industry [9]. Examples include etch-
ing of GaAs used in the fabrication of optoelectronic
devices [10], and etching of copper films used in the
fabrication of printed circuit boards. A common
characteristic of the-above and other similar processes
is that the reaction rate and its distribution along the
etching surface depend in a complex manner on the
interaction among fluid flow, mass and heat transfer,
and chemical reaction kinetics. In addition, the reac-
tion rate depends on the instantaneous shape of the
topographical feature or cavity, which in turn affects
the further shape evolution of the cavity. The fol-
lowing discussion focuses on etching, although similar
principles and methods of analysis apply to related
processes such as electrodeposition through masks
[11], and even localized corrosion [12].

TAuthor.to whom correspondence should be addressed.

_.processes.

+. Mask
(a) * Film
77777777777, Substrate
(b)

F1G. 1. Schematic of selective etching of a thin film through
a resist mask : () before etching; (b) after etching.

Important goals of the etching process are high

- etching rate, and low mask undercut (anisotropic

etching). The process is often limited by mass transfer
of the etchant from the solution bulk to the surface,
or removal of the reaction product-from the vicinity
of the surface. Therefore, different methods have been
used to enhance the mass transport, most noticeably
impinging jet or cross flow over the cavity [8]. At the
initial stages of the process, when the cavity is still
shallow, such methods can be effective since the exter-
nal flow can invade the cavity bringing ‘fresh’ solution
into the cavity and washing the dissolution products
away (Fig. 2(a)). As the cavity deepens, however,
recirculating flow patterns develop within the cavity,
and after a certain aspect ratio (depth:width) has
been reached, the external flow can no longer pen-
etrate the cavity [13]. In such a case, communication
of the ‘contaminated’ solution trapped in the cavity
with the external flow occurs only through a boundary
layer along the cavity mouth (Fig. 2(b)). Since the
recirculating eddy motion is weak, mass transfer and
etching rate are drastically reduced. Further, the long
etching times required result in excessive mask under-
cut. The situation becomes even worse when the cavity

2191
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NOMENCLATURE
A aspect ratio, /2L U dimensionless fluid velocity vector, Lu/D
c species concentration [mol m™7] U, fluid velocity at center of cavity mouth
¢,  far-field species concentration [mol m~3] [ms™1]
Cw:  Species concentration at saturation U,  x-component of dimensionless fluid
[mol m~2] velocity
C dimensionless species concentration, U,  y-component of dimensionless fluid
(C - cco)/(csat_ cco) VelOCity
D diffusivity [m?s™} x horizontal spatial coordinate [m]
h cavity height [m] X dimensionless horizontal spatial
j unit vector in the y-direction coordinate, x/L
ks local mass transfer coefficient [m s~ '] y vertical spatial coordinate [m]
P pressure [Pa] Y dimensionless vertical spatial coordinate,
P dimensionless pressure, y/L.
(P—Poty)L?/(1D)
Ra  Rayleigh number, af(cu—coo) L/ (vD) Greek symbols
Re Reynolds number, #L/v o gravitational acceleration [m s~
Sc Schmidt number, v/D B coefficient of volume expansion
Sh,  local Sherwood number, k,.L/D [m® mol~1]
Sh,. - -average Sherwood number -~ == g ——---viscosity Tkg m~ ' s
t time [s] v kinematic viscosity [m?*s™']
T dimensionless time p density [kg m~?]
u fluid velocity vector po  far-field density [kg m~7].

(c)

F1G. 2. Schematic of streamlines for flow over cavities. (a)
Forced convection over a shallow cavity ; external flow pen-
etrates cavity resulting in good mass transfer. (b) Forced
convection over a deep cavity ; relatively slow recirculating
flow reduces communication between outside solution and
that inside cavity resulting in poor mass transfer. (¢) Natural
convection in deep cavity ; communication between outside
solution and that inside cavity is restored resulting in good
mass transfer.

becomes deep enough for a second eddy to form
underneath the first. The solution in this eddy is
almost stagnant and transport is governed by
diffusion.

A unique method to enhance mass transport in

deep cavities makes use of density-gradient-induced
natural convection [14]. In a typical etching situation,
the solution density adjacent to the dissolving solid
surface is different than in the bulk. Such density
gradients can induce fluid motion by natural con-
vection which can be further enhanced in an artificial
gravity environment, e.g. by rotating the substrate.
The natural convection flow patterns disrupt the mass
transfer boundary layer which would otherwise exist
along the cavity mouth. Fresh solution can now pen-
etrate deep into the cavity and reaction products can
be swept away (Fig. 2(c)), i.e. the communication

between the external solution and that inside the cav-

ity is greatly improved. The result is improved mass

transfer rate and, if the process is mass transfer

limited, improved etching rate.

Recently we developed a mathematical model to
study the effect of mass transport and chemical reac-
tion on the shape evolution of two-dimensional cavi-
ties undergoing etching [15]. The case of cross flow
over the cavity in the absence of natural convection
was considered. The purpose of the present inves-

. tigation is to study the mass transfer enhancement in

open cavities due to natural convection induced by
density gradients during etching of a solid film. A
fixed value of the Schmidt number Sc = 1000 was
used which is typical of aqueous solutions. The effect
of cavity aspect ratio and of Rayleigh number Ra was
examined. Aspect ratios (depth:width) of 1:4, 1:1,
and 2 : 1 were studied with Ra up to 10° (Ra was based
on the cavity halfwidth). The results were compared
to mass transfer due to forced convection alone in a
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cross flow configuration with Peclet numbers
Pe = 102, 10°, and 10* (Reynolds numbers Re = 0.1,
1, and 10). Although chemical etching is being
emphasized, the results of this study are not limited
to the etching problem but may be applied to, for

example, electrodeposition through masks [11], or.

other natural and forced convection problems in open
cavities. This study considered cavities of a fixed shape
as a.prelude to studying the effect of natural con-
vection on the shape evolution of cavities.

2. MATHEMATICAL FORMULATION

2.1. Natural convection system

A schematic of the free convection system is shown
in Fig. 3. A solid film is partially protected by a resist
mask having thickness 4. The mask forms a rect-
angular cavity of width 2L in the unprotected area
of the film. The third dimension (along z) of the cavity
was assumed long and therefore a two-dimensional
system was considered. The etching. solution reacts

~selectively with the exposed filmrwithoutattacking the

resist mask. Etching takes place under the influence
of an acceleration field as shown in Fig. 3. The film
dissolution products enter the solution altering the
local solution density. This in turn induces convective
flow patterns, first within the cavity and later in the
near-cavity outside region. Such convective flow pat-
terns affect the rate of mass transport to and from the
reactive surface. The dissolution rate is assumed to be
controlled by the mass transport of reaction products
away from the surface. Hence the product con-
centration on the film surface is taken equal to the
product saturation concentration in the etching solu-
tion. Our purpose is to compute the time-dependent
local and spatially-averaged mass transfer rate for
different cavity aspect ratios 4 (=#h/2L) and Rayleigh
numbers.: As time progresses and the film dissolves,
surface I'; recedés altering the cavity shape and
dimensions. In the present work we are interested
in the initial stages of dissolution when the cavity
dimensions are still essentially unaffected by the dis-
solution process. The effect of natural convection on

— I:D _____________
4 g \\\
4 AY
1 Etching \I
E Q . Solution :
! . b
I 1
| I
! ! 1
i |
1 1
! Ia 1
! §
1 1
t 1
1 [P ) E. T |
X
Photoresist l
Mask’///, | T,
L fe—— 2L —=
Film . [

FiG. 3. Schemati¢ of the natural convection system. The
acceleration field « is-applied in the y-direction.

the 'shape evolution of the cavity will be reported
elsewhere. .

The fluid was assumed incompressible and New-
tonian, and the system was assumed isothermal with
constant physical properties except for the solution
density. The usual Boussinesq approximation was
applied, assuming a constant density in all terms
except the body-force term of the Navier—Stokes
equations. The solution density was assumed to
depend on the concentration of the reaction product
according to the following equation of state:

P = poll+hlc—ca)l )

Using the above assumptions the governing equations :
are written as

ou 1 ‘ 2’ P ;
5T vs _EVp+vV u+ ot nQ 2
Viu=0 inQ ©)
6c . 2 . :
.a_t+u-Vc=DV ¢ inQ: @

The governing equations are rendered dimensionless
by defining

@n=76, T=3 ©

v-Ly, p=——@“i°;j‘y)Lz ©
c:% .

Se =%, ' Ra =ﬂgﬁ(CLgvc£. ®)

The dimensionless form of the governing equations.is

1 (U , L
§<ﬁ+U VU>_—VP+V U+RaCj mQ (9)
V-U=0 inQ (10
Z—;+U-VC=V2C nQ. 1.

The corresponding boundary and initial conditions
are

U

-0, C=0 on T, C(12)

on _
oC

U=0, = 0 on I, (13)

U=0, C=1 on I, (14)

U=0, C=0.in Q at T=0 (15)

where 0/0n denotes the gradient in the direction of the
outward normal to the boundary.

Boundary condition equation (12) implies that the
product concentration far from the reacting surface
remains equal to ¢,. Boundary condition equation
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(13) implies that the product does not react with or
penetrate into the mask. The cavity halfwidth L was
used as the characteristic length to define the Rayleigh
number, although the cavity depth # may-be a-more
appropriate scale. The reason for this choice was that
the work presented here is the first step towards study-
ing the effect of natural convection on the shape evol-
ution of cavities, in which case the cavity depth will
be a time-varying quantity.

The main parameéters of the problem are the
Schmidt number Se, the Rayleigh number Ra, and
the cavity aspect ratio 4. The dimensionless local
mass transfer rate was expressed as a local Sherwood
number '

kL oC
Shy === (16)

The average Sherwood number along the reactive sur-
face was defined as -

, S.havAiJ i Sk;vdli/ (L@) . an

In the extreme case of Ra = 0, there is no convective
motion, and mass transfer occurs by diffusion alone.

2.2. Forced convection system
The case of purely forced convection was examined
as well in order to compare the mass transfer results
to the natural convection case. The forced convection
system is shown in Fig. 4. The system is identical to
that of Fig. 3 except that the acceleration field is
absent, and that a shear flow prevails far from the
cavity. The same governing equations apply as before
(equations (9)=~(11)) with Ra = 0. In this case the
relevant parameters are the cavity aspect ratio, the
Peclet number defined by equation (18) below, and the
Reynolds number Re = Pe/Sc
' ' " ulL

Pe=" TS

The boundary and initial conditions appropriate for

Eluid Flow Ty

Etching
Solution

4

T ﬁ. s

Photoresist T X
Mask jn T
} 1
. fe— 2L ——}
Film .

Fi1G. 4. Schematic of the forced conveéction system. A simple
shear flow prevails far from the cavity.

Table 1. Dependence of U, along boundary I"; (Fig. 4), and
of Sherwood number on Peclet number and cavity aspect

ratio
Average
Cavity aspect Peclet Sherwood
ratio number U.,onl'; number
10? 2457 x 10° 2.463
1:4 103 2.460 x 10* 4.731
10 - 2.607 x 10° 10.96
10? 2.220 % 10° 1.071
1:1 103 2.222x10* 2.534
104 2.328 x 10° 5.904
102 2.216x 103 0.3746
2:1 10° 2.218 x 10* 0.5404
10* 2.324.x 10° 0.8378
the forced convection system are [12, 15]
U=0_C=1 on Iy (19
au, . o
T U,=0, C: 0 on T, . (20
' oC .
Uy = constant, ‘U, =0, = 0o on T; (2D
oU, o ocC v
on - U,=0, n 0 on Iy 22)
aC .
U =1, 5;:0 on T T (23)

U=0, C=0 in Q at T=0. (24

The Peclet number does not appear explicitly in the
governing equations or boundary  conditions.
However, Pe is directly related to the applied shear
rate and therefore to the value of U, on boundary
I'; (boundary condition equation (21)). The relation
between Pe and U, is shown in Table 1. The effect of
forced convection on the shape evolution of open
cavities during chemical etching was examined in an
earlier work [15].

3. METHOD OF SOLUTION

The solution to the governing equations (9)—(11)
subject to the associated boundary conditions (12)—
(15) was obtained by using the finite element method.
The finite element mesh used for the case of a cavity

. aspect ratio 4 = 1 is shown in Fig. 5. The mesh was

made finer around the mouth of the cavity and within

the cavity where steeper concentration gradients are .

expected. Because the physical domain is unbounded,
a problem arises regarding the size of the com-
putational domain, more specifically the location of
boundary I',. Various methods have been proposed
to overcome the difficulty associated with an
unbounded domain [16-18]. One approach is to pos-
ition I, far from the cavity mouth, so that conditions
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(-7.5,6.5)

(7.5,6.5)

(-7.5,0)

(7.5,0)

=1,-2)

(1,~-2)

FIG 5. The finite element mesh used for a 1:1 cavity. The dotted elements are mapped infinite elements ;
the rest are normal finite elements.

near. ,thcpayity,,aré ,Iioft_affeqtedfby_the ﬁg)g_a;qt_ location

of the boundary. This approach may result in an
unnecessarily large computational domain and hence
more CPU time to obtain the solution. Amother
method is adopted in this work, namely the ‘mapped
infinite element’ method [19, 20]. This method is par-
ticularly attractive. when used in combination with
conventional elements. The elements of the outermost
layer in Fig. 5 (dotted area) are mapped infinite
elements. The rest are conventional bilinear quadri-
lateral elements. The total number of elements
and nodal points used in Fig. 5 are 1080 and 1162,
respectively. o

The velocity and concentratlon fields in the com-
putational domain were obtained by using the penalty
function formulation and the Streamline Upwind/
Petrov Galerkin (SU/PG) finite element method [21,
22]. Time integration was performed using an implicit
predictor-multicorrector scheme [23] with variable
time step. A fixed time step may be used as long
as stability is assured. However, the fixed time step
method may not be as cost effective. For example, a
small time step may be required to accurately track
the transient behavior of the system during a par-
ticular time period, whereas a much larger time step
may be adequate for a different time period. In such
cases, a variable time step is more effective. The vari-
able time step algorithm used in the present work is
similar to that used by Bailey [24].

The transient solution to the two-dimensional prob- ‘

lem was obtained in a sequential manner by decoup-
ling the velocity and concentration fields [25, 26]. At
time 7", the velocity field U” and the concentration
field C* were known. Here superscript # denotes the
nth time step and T° = 0. Then U*** and C**' were
obtained through the following substeps.

(1) With C*known, U™ ! was calculated from equa-
tions (9) and (10) and the associated boundary con-
ditions with an implicit predictor-multicorrector

algorithm. If more than five iterations were needed in
the corrector step to obtam U™, the time step was
halved and calculations returned to the predictor step.

(2) With U"*! known from substep .1 above, C"*!
was calculated from equation (11) and the associated
boundary conditions with an 1mp1101t predictor-multi-
corrector algorithm.

(3) The Euclidean norm ¥™*! of U"*}, and i in turn
the quantity ¢ was calculated by

+1 n

) e
If & < 0.01, the time step was doubled. If ¢ > 0.1 the
time step was halved. If 0.01 < & < 0.1 the time step
was not changed. A procedure identical to the one
described above (substeps 1-3) was then used to
obtain U™*? and C"*?. Calculations were performed
on a CRAY X-MP supercomputer.

In the case of forced convection there is no need to
use infinite elements since the concentration boundary
layer is always confined near the wall, for the par-
ameter values used. In this case, the position of bound-
ariesI',, I';,and ', waschosenat X = —5,Y = 4,and
X =5, respectively. Numerical experiments revealed
that the results’ were not affected by positioning
boundaries I',, T';, and I', furtber away from the
cavity mouth. Only the steady-state solution was com-
puted for the forced convection system. The velocity
field was obtained by using the penalty function for-
mulation and Newton—Raphson iteration [21]. The
velocity field was subsequently used to calculate the
concentration field by the SU/PG method.

4. RESULTS AND DiSCUSSION

For the natural convection system, results are pre-
sented in terms of time-dependent local and spatially-
averaged Sherwood numbers for different cavity
aspect ratios and Rayleigh numbers. For the forced
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convection system results are shown in terms of the
steady-state local Sherwood number for different cav-
ity aspect ratios and Peclet numbers. Velocity vector
plots and iso-concentration contour plots are used to
depict the flow and concentration fields, respectively.
All the results shown below were obtained for a
Schmidt number S¢ = 102,

Before any further calculations were made, the
accuracy of the natural convection numerical code
used in the present work was tested by compar-
ing with the solution of natural convection in en-
closed cavities given by Taylor and Ijam [2]. The case
of unity cavity aspect ratio with Prandtl number
Pr=10% and Ra = 10° was chosen for comparison.
Results on the temperature and velocity profiles at
the cavity mid-height agreed to within 5%. The
accuracy of the forced convection code has been
verified previously [15].

4.1. Natural convection system
Figure 6 shows the time-dependent spatially-aver-

aged Sherwood number for-the-1 4 cavity-and-for—-

different Rayleigh numbers. At early times, mass
transfer is due to diffusion alone and does not depend
on the value of Ra. After a certain time, which depends
on the value of Ra, convective instability sets in and
the mass transfer rate increases over the diffusion rate.
As Ra increases, the instability occurs earlier and the
mass transfer rate increases. For low values of Ra, the
mass transfer enhancement is relatively small and a
steady state may be obtained. For higher values of Ra
(e.g. for Ra = 10%) oscillations in the mass transfer
rate are observed. Similar oscillations were observed
by Ettefagh and Vafai [5] who studied natural con-
vection in open cavities with a porous medium.
Figure 7 shows the concentration and flow fields
for the 1:4 cavity, for Ra = 10°, and at four different
times which are marked by crosses on the cor-
responding curve of Fig. 6. At early times, the con-
centration and flow fields are symmetric with respect
to the X = 0 axis (Fig. 7(a)). One observes the for-
mation of a primary plume along the axis of symmetry

10

\ \MJL Ra=10%

N .}
T

Avg. Sherwood No., Shyy
E-N

0o Looa a1l ol L2 ) g

1071’ 10 10"

Dimensionless Time, T

Fic.6. Spatially averaged Sherwood number as a function
of time for the 1:4 cavity and with the Raylelgh number as
a parameter.

by which denser solution flows out of the cavity caus-
ing ‘fresh’ solution to flow into the cavity. This
incoming flow drives two eddies which fill a large
fraction of the cavity volume. The outcoming plume
creates, by viscous drag, an almost horizontal flow in
the near-cavity outside region, which turns upwards
further from the cavity. In addition to the primary
plume, two secondary plumes are formed near the
corners of the cavity mouth. At later times, symmetry
breaking is observed (Fig. 7(b)) which becomes even
more pronounced at a still later time (Figs. 7(c) and
(d)). Asymmetric flow patterns in an otherwise sym-
metric two-dimensional vapor-phase epitaxy reactor
were recently reported by Weber er al. [27]. The
authors also presented a bifurcation diagram showing
the transition from symmetric to asymmetric flows.
Figure 8 shows the local Sherwood number dis-

© tribution along the reactive surface for the same times

asin Fig. 7. The mass transfer rate is minimum at the
corners where the mask meets the reactive surface.
This implies that the mask “undercut’ would be smaller
than the etched depthy;, yielding an etch profile which is
not isotropic. Etch anisotropy is important especially
when deep etching is desired. At early times, a local
minimum in mass transfer rate is observed at or near
the middle of the active surface. This local minimum
is caused by the plume of denser solution flowing
out of the cavity. The mass transfer rate distribution
becomes less nonuniform when the primary plume
shifts to the corner of the cavity mouth (sée also Figs.
7(c) and (d)). The mass transfer rate distribution can
also be deduced from the concentration contour plots
(Fig. 7), in which the spacing between'the contours is
an indication of the local mass transfer rate.

Figure 9 illustrates the spatially-averaged Sher-
wood number as a function of time for the 1: 1 cavity,
with Ra as a parameter. The same general qualitative
features are observed as for the 1:4 cavity. However,
for a given:value of Ra, convective instability sets in
at a later time as compared to the 1: 4 cavity. Thisisa
manifestation of the stabilizing effect of the sidewalls.
Furthermore, the mass transfer rate is lower for the
higher aspect ratio cavity.

Representative concentration and ﬂow fields for the
-1:1 cavity are shown in Fig. 10 for Ra = 104, and for

the times marked by crosses on the corresponding
curve of Fig. 9. As for the 1:4 cavity (Fig. 7), sym-
metry prevails at early times and a plume of denser
solution forms. However, the two eddies which occu-
pied a large fraction of the 1:4 cavity (Fig. 7(a)) are

~ much smaller in the case of the 1: 1 cavity (Fig. 10(a)).

These eddies are at the corner where the mask meets
the reactive surface and cannot be seen on the scale
used for the vector plot of Fig. 10(2). Symmetry, break-
ing occurs at later times (Fig. 10(b)), and the asym-
metry becomes more pronounced at still later times
(Figs. 10(c) and (d)). In the latter case, an eddy occu-
pies a large portion of the cavity volume and this eddy
oscillates back and forth within the cavity (Figs. 10(c)
and (d)).
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a parameter.

The local mass transfer distribution is shown in Fig.
11 for the same times as in Fig. 10. At early times, a
local minimum appears at or around the midpoint
of the active surface. As in Fig. §, thié minimum is
associated with the formation of a plume. At later
times, the plume shifts to the corners of the cavity
mouth and the mass transfer rate is less non-uniform.
The broad maximum in mass transfer rate at later

times is in the area where an eddy encounters the

cavity bottom. Since the eddy oscillates, the maximum
in mass transfer oscillates as well.

Figure 12 shows the spatially-averaged Sherwood
number as a function of time for the 2 : 1 cavity and for
different Rayleigh numbers. One observes the same

general qualitative features as for the 1: 1 cavity (Fig.
9). However, the values of Sk are generally lower-

for the 2:1 cavity, although the difference is not as
pronounced as when comparing the 1:1 cavity to
the 1:4 cavity. The concentration and velocity vector
plots for Ra = 10° and at four different times are
shown in Fig. 13. Similar features are noticed as
in Fig. 10, i.e. the formation of a symmetric plume
at early times, symmetry breaking and oscillatory
behavior at later times. The flow patterns inside the

C:. B.-SHN and D. J. EcoNOMOU

cavity are very complex. The local mass transfer dis-
tribution for the 2:1 cavity exhibited the same
features as for the 1: 1 cavity (Fig. 11).

4.2. Forced convection system

Only the steady-state results are shown for the
forced convection system. Table 1 shows the relation-
ship between the Peclet number (as defined by equation
(18) and U, (or equivalently the shear rate) for differ-
ent cavity aspect ratios. In all cases fluid entered the
cavity from the left (Fig. 4). Figures 14(a) and (b)
show the concentration contour plot and the velocity
vector plot, for the 1: 4 cavity with Pe = 10° (Re = 1).
The external flow penetrates the cavity washing away
the reaction products. The fluid velocity is relatively
low in the corner regions of the cavity bottom where
eddies form. These eddies cannot be resolved on the
scale used for the velocity vector plot. The flow pat-
terns are similar for Re = 0.1 and 10, but the velocities
differ. The local Sherwood number for the 1:4 cavity

—-is~shown in Fig~14(c) forthree values of “Pe. "As

expected, the average Sh increases with increasing Pe
(see also Table 1). The mass transfer rate is relatively
high around the region where the external flow first
encounters the cavity bottom (around X = —0.4, see
Fig. 14(a)). The mass transfer rate passes through a

local minimum around the region where the external

flow turns away from the cavity bottom (around

X = 0.5). The maxima and minima of the mass trans-

fer rate can also be deduced from the concentration

contour plot (Fig. 14(a)), where the spacing between

the contours is an indication of the local mass transfer

rate. _

Figure 15 shows the concentration contour plots
for the 1:1 cavity and for three different values of
Pe (Pe =102, 10%, 10%). In the 1:1 cavity case, the
external flow can no longer penetrate the cavity.
Instead, a large recirculating eddy forms which fills.
the cavity volume. The formation of a mass transfer
boundary layer along the active surface is clearly seen,
especially for the higher values of Pe. The boundary
layer becomes thinner as Pe increases. The con-.
centration is nearly uniform in the cavity core outside -
the boundary layer. Another ‘boundary layer’ is seen
to form along the cavity mouth, preventing effec-
tive. communication between the external flow and
the interior of the cavity. This communication can
be restored in the presence of natural convection
(Fig. 10). '

Figure 16 shows the local Sherwood number as a
function of position along the active surface for the
1:1 cavity and for different values of Pe. The rate of
mass transfer increases and its distribution becomes
less uniform ‘as Pe increases. The mass transfer rate
attains a maximum between the center and the right
corner of the cavity bottom. This maximum is associ-
ated with a clockwise eddy filling almost the entire
cavity. volume. The maximum occurs at the point
where the eddy first encounters the cavity bottom.
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Fi6. 11. Local Sherwood number distribution along the
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Rayleigh number Ra = 10*.
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FIG. 12. Spatially-averaged Sherwood number as a function
of time for a 2: 1 cavity and with the Rayleigh number as a
parameter.

The maximum becomes more pronounced as Pe
increases. ’

The concentration contour plots for the 2: 1 cavity
are shown in Fig. 17 for three values of Pe. The flow
field in the 2:1 cavity consists of a main clockwise
eddy driven by the external flow, and a secondary
counter-clockwise eddy underneath the first. The fluid
motion is very weak in the secondary eddy and mass

transfer in this region is mainly by diffusion, especially -

at low values of Pe. Hence the concentration contour
plots deeper in the cavity are nearly paralle] to the
reactive surface. The corresponding local Sk dis-
tribution is shown in Fig. 18. Mass transfer is nearly
uniform for Pe = 102 and 10%. However, mass transfer

attains a maximum for Pe = 10*. The maximum is in,

the region where the secondary eddy first encounters
the cavity bottom. '
The steady-state spatially-averaged Sherwood
number results for the forced convection system are
summarized in Table 1 (last column). By comparing
with the corresponding values of the natural con-
vection system (Figs. 6, 9, and 12), one observes that
natural convection is particularly advantageous for
enhancing mass transfer in high aspect ratio cavities.

For example, for the 2: 1 cavity and for a comparable
magnitude of the fluid velocity at the center of the
cavity mouth, natural convection yields a mass trans-
fer rate one order of magnitude higher than forced
convection. This is of great importance in etching of
deep cavities.

5. SUMMARY AND CONCLUSIONS

The time-dependent mass transfer by natural con-
vection in two-dimensional open cavities was studied
for a Schmidt number of 10°. The Streamline Upwind/
Petrov Galerkin finite element method with an
implicit predictor—multicorrector algorithm was
employed. The method of mapped infinite elements
was used to treat the unbounded domain. The effect
of cavity aspect ratio and of Rayleigh number on the
local and spatially-averaged Sherwood number was
examined. Forced convection mass transfer cal-
culations were also performed for different cavity
aspect ratios and Peclet numbers. Emphasis was

-placed ~ona “system~ simulatingselective- chemical

etching of thin solid films in microelectronic device
fabrication.

In the natural convection system, plumes of denser
solution formed, which caused ‘contaminated’ solu-
tion to flow out of the cavity and ‘fresh’ solution to
flow into the cavity, thereby providing an effective
means of mass transport. This was especially true for
high ‘aspect ratio (deep) cavities which are difficult
to access by other means as, for example, by forced
convection. The flow and concentration fields were
symmetric at early times. However, symmetry break-
ing and oscillatory flows, with concomitant oscil-
lations in the mass transfer, were observed at later
times. The oscillatory behavior was characterized by
complex cellural flow patterns within the cavity. The
mass transfer rate distribution was nonuniform along
the active surface, and it was, in general, substantially
lower at the corners where the inert surface (mask)
met the active surface. This fact has implications for
the etch anisotropy achievable with the natural con-
vection system. The average mass transfer rate

increased with increasing Ra and with decreasing cav-

ity aspect ratio. .

Forced convection was effective in enhancing mass
transfer in low aspect ratio (shallow) cavities.
However, for deep cavities, slow recirculating flows
and boundary layers along the cavity mouth pre-
vented effective communication of the external flow
with the cavity interior, causing a drastic decrease
in mass transfer. The mass transfer rate distribution
along the active surface was non-uniform, especially

at high Peclet numbers. The average mass transfer

rate increased with increasing Peclet number and with
decreasing cavity aspect ratio.

When compared to forced convection, natural con- .

vection is very attractive for enhancing the mass trans-
fer in deep cavities. For example, for a 2: 1 cavity, and
for comparable magnitude of the fluid velocity at the
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FiG. 13. Concentration contour plot (left) and velocity vector plot (right) at different times for a 2:1
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FiG. 14. Concentration contour plot (a) and velocity vector plot (b) for forced convection over a 1:4

cavity with Peclet number Pe = 10° (Reynolds number Re = 1). The outermost contour corresponds to

C =0.01. The bottom of the cavity corresponds to C =1. Linear interpolation applies for the contours

between. (¢) Local Sherwood number distribution along the active surface for forced convection over a
1:4 cavity and for different Peclet numbers.
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FiG. 16. Local Sherwood number distribution along the
active surface for forced convection over a 1:1 cavity and
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MASK

la

|
-
o
-t

MASK
MASK

MASK
MASK

(c)

F1G. 17. Concestration contour plot for forced convection
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1.

10.

§ ;‘ center of the cavity mouth, natural convection yielded
a mass transfer rate one order of magnitude higher
i than that of forced convection. Therefore, natural

il convection may be useful in etching of deep cavities.

The system examined in the present work is only a

i simplification of practical etching systems. For ex-
‘ ample, a cavity of invariant shape was considered,
i although shape evolution occurs during etching [15].
” However, the present work was thought to be a logical
first step before examining the effect of natural con-

t vection on the shape evolution of cavities. Finally it
il should be noted that, from a practical point of view,
| natural convection may not be viable for very small
geometries due to the strong dependence of Ra on the
}‘ . length scale (Ra ~ L?). Thus, for very small cavities,
i a very large acceleration field (x) may be needed to
‘ exceed the critical value of Ra for convection to set
‘i in.
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TRANSF. ERT DE MASSE PAR CONVECTION NATURELLE ET FORCEE DANS DES
CAVITES OUVERTES

Résumé—On étudie le transfert variable de masse par convection naturelle dans des cavités ouvertes
bidimensionnelles en utilisant la méthode des éléments finis. I.’attention est portée sur un systémeé simulant
la gravure chimique sélective des films solides minces pour la fabrication des éléments microélectroniques.
Des nombres de Sherwood locaux dépendants du temps et moyens dans I'espace sont rapportés pour un
nombre de Schmidt de 103, des rapports de forme de cavité (profondeur:largeur) de 1:4, 1:1et2:1 et
pour des nombres de Rayleigh allant jusqu’a 10°. Les champs d’écoulement et de concentration sont
symétriques au début. La symétrie disparait et des écoulements oscillants s’installent ensuite. La formation
de panaches se produit 4 cause de la communication entre la solution externe neuve et la solition usée
dans la cavité, spécialement pour des cavités profondes qui sont d’accds difficile. On etudie aussi la
convection forcée de masse pour des nombres de Peclet allant jusqu’a 10*. Les résultats sont importants
pour les gravages anisotropes profonds des films minces solides et d’autres procédés connexes.
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Mass transfer by natural and forced convection in open cavities

STOFFUBERGANG DURCH NATURLICHE UND ERZWUNGENE KONVEKTION IN
OFFENEN HOHLRAUMEN

Zusammenfassung—Mit einer Finite-Elemente-Methode wird der zeitabhingige Stofftransport durch
natiirliche Konvektion in zweidimensionalen offenen Hohlrdumen untersucht. Damit soll selektives chem-
isches Atzen diinner Schichten simuliert werden, wie es bei der Fertigung im Bereich der Mikroelektronik
angewandt wird. Zeitabhingige, ortliche und rdumlich gemittelte Sherwood-Zahlen werden fiir eine
Schmidt-Zahl von 10%, fiir Seitenverhiltnisse des Hohlraums (Tiefe: Breite) von 1:4, 1:1 und 2: 1 und fiir
Rayleigh-Zahlen bis 10° dargestellt. Strémungs- und Konzentrations-Verteilung sind anfangs symmetrisch,
spiter treten jedoch ein Aufbrechen der Symmetrie und ein Schwingen der Stréomung auf. Die Ausbildung
von Auftriebsfahnen fiihrt zu einem effektiven Austausch zwischen der duBeren “sauberen” Atzlésung und
der “verschmutzten” Losung innerhalb des Hohlraums. Dies ist besonders fiir tiefe Hohlrdume wichtig, die
sonst schwer zugénglich sind. Es wird auch erzwungene Konvektion fiir Peclet-Zahlen bis 10* untersucht.
Im Vergleich zur erzwungenen Konvektion ergibt sich bei natiirlicher Konvektion im 2 : 1-Hohlraum eine
Erhohung des Stoffaustausches um eine GréBenordnung. Die Ergebnisse sind von groBer Bedeutung fir
tiefe anisotrope Atzungen diinner Schichten und andere dhnliche Prozesse.

MACCOIEPEHOC ECTECTBEHHO ¥ BRIHVKIEHHOVW KOHBEKIIMENA B
HE3AMKHVTBIX TTOJIOCTAX

AsnHoTamHs—MeTOIOM KOHEUHBIX 3JIEMEHTOB HCCIIEAYETCs HECTALMOHAPHEIH MacCOHEPEHOC, BEI3BaHHbIMA
€CTECTBEHHOH KOHBEKUHEH B IBYMEPHBIX HE3aMKHYTEIX ItoocTsx. Ocoboe BHAMaH@e yASIAETCH
CHCTEME, MOJENHMpYIomel H3GHpaTeIbHOS XHIMAYECKOEe TPaBJIeHAe TOHKHX TBEPABIX IUICHOK, IpUMEHSse-
MO€ [IPH IPOH3BOJCTBE MHKPOJICKTPOHHBIX 3IEMEATOB. TIpEACTaBIEHBI 3aBHACSINUE OT BPEMEHH JIOKA-
JIbHEIE ¥ IPOCTPAHCTBEHHO YCpeqHEHHHE 3HaYeHus acua Hleppyna s 3Havenns acaa Mvmara 103,
OTHOINECHHUI CTOPCH HOJIOCTH (TTy6mHa : imaprara) 1:4, 1: 1w 2: 1 m na 3navennit yncna Panest BIioTs
0 10°. Ha BavaubHOM CTa[AA OJNA CKOPOCTeH TEYeHHs ¥ KOHIEHTPAWIt SBISIOTCS CEMMETPETHEIMA.
Ommaxo ga Goee MO3THAX CTAAHAX IPOHCXOJHUT HAPYIICHHE CAMMETPHH H BO3HHKAIOT KOJeGaTebHbIC
pexaMsL. O6pazoBasEre BOCXOIAMMX CTPYH NPpHBOIUT K 3 (PeKTABHOMY B3aHMOJEHCTBHIO BHOBb IOCTY-
TAXOHIEro “CBEXEro” TPaBHIBHOIO PacTBOpa ¢ “3arps3HEHHBIM” PACTBOPOM, OCOOEHHO IS IITOOKEX
HOOJIOCTeH, ZOCTyH B KOTOphie B HPOTHBHOM Cilydae 3aTpynHeH. McciemyeTcs Takxke MaccOIEpEHOC
BBIHYXEHHOH KOHBexnuel npy 3Hadermsx aucna [lexse mo 10% Ilo cpaBHEHMIO CO CIY4aeM BEIEYXOCH-
HOM KOHBEKIIHH €CTECTBEHHOKOHBEKTHBHEIM MaCCONEPEHOC HA HOPAXOK MHTCHCHBHEH B DOJOCTH C OTHO-
mepAeM cropoH 2: 1. ITomysernbie pe3yibTaThl HMEIOT OOJblIOe 3HAYEHHEe MUIS TIIyOOKOro
aHW3OTPOIHOIO TPABJICHASI TOHKHX TBEPBIX IUICHOK H JPYTAX CBI3aHHEIX C HAM IPOIECCOB.
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