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ABSTRACT:  We provide a smooth introduction to reduced-rank analysis via singular-value decomposition, and show how it can be used to
monitor images of etched silicon wafers.  An industrial case study is discussed.

1 INTRODUCTION
Spatially uniformity is necessary for high yields in a number of
crucial processes of the semiconductor manufacturing industry,
such as etching or deposition of thin films and chemical-
mechanical planarization (CMP).  In plasma etching, good spatial
uniformity is the result of both appropriate design of etching tools
as well as development of successful recipes.  For either of these
tasks, the designer or operator must be able to assess spatial
uniformity characteristics, understand similarities and differences
between tools or recipes, and apply criteria for the monitoring of
spatial uniformity from tool to tool or run to run.  Because
uniformity is usually expressed in terms of a single number (e.g.,
3σ/[average etch depth]) very different spatial uniformity profiles
may result in the same numerical value of uniformity (Figure 1),
thus masking important information that could be useful in a
number of ways related to tool or recipe performance.

    

Figure 1 – Etch rate profiles on 300-mm wafer surface,
interpolated over 49 measurement points (black dots).  Both
wafers correspond to virtually the same numerical uniformity
value, but exhibit very different etch patterns.

In this presentation we provide a brief tutorial overview of
the fundamentals of reduced-rank analysis, and show how it can be
applied to the analysis, comparison, and monitoring of images
corresponding to etch patterns of silicon wafers, as well as
multivariate statistical process control.

2 COMPRESSION OF COLLINEAR DATA VIA
SINGULAR VALUE DECOMPOSITION (SVD)

2.1 Basic case:  Deterministic signals, no noise

Figure 2 – Etch rate measurement points

q An unrealistic but instructional example setting
Suppose that etch rates, 1 2 3, ,x x x  are exactly measured at three

points (edge/center/edge) along the diameter of a wafer, as shown
in Figure 2.  As we collect data, wafer after wafer, we want to be
able to use numbers that describe how similar the etch rate profiles
are, and whether they are the result of a consistently performing

process.

q Noiseless data are collected
Note that, for now, the data are assumed to be exact, i.e.  there is no
measurement noise.  A set of data collected is shown in the matrix
X below, and Figure 3.
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2600 3348 3361
2700 3423 3311
2800 3392 2907
2900 3393 2609
3000 3527 2757
3100 3745 3182 [ ]ˆ3200 3900 3400
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3400 3882 2740
3500 3934 2614
3600 4118 2927
3700 4327 3324
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Figure 3 – Hypothetical etch rate profiles for 12 wafers (left)
and Hypothetical local etch rates vs. wafer # (right).

q Data collinearity and computation of matrix rank
Are the variables 1 2 3, ,x x x  linearly dependent?  I.e. is there a

nonzero vector 1 2 3[ ]ˆ Ta a a=a  such that

1 1 2 2 3 3 0 0Ta x a x a x+ + = ⇔ =x a (2)

If so, then the data satisfy the relationship (model equation)

1 1 2 2 3 3 0a a a+ + = ⇔ =x x x Xa 0  for ≠a 0 (3)

E.g., if two of the column vectors x1, x2, x3 (in 12ℜ ) are linearly
independent, the rank of the full data set matrix X will be 2, and
we will be able to express each of the column vectors x1, x2, x3 (in

12ℜ ) as a linear combination of two basis vectors y1, y2 (in 12ℜ ).
A numerically robust method to check whether eqn. (3) is

valid is the singular value decomposition (SVD).
Sidebar – Singular value decomposition (SVD)
Theorem :  A matrix X of dimensions m n×  can be factorized as
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where [ ]1ˆ m m
m
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orthonormal matrices1 (i.e. T T= =UU U U I , T T= =VV V V I )
whose columns are the (normalized) eigenvectors of the matrices

TXX  and TX X , respectively;  1 r≥ ≥Lσ σ  are the square roots

of the nonzero eigenvalues of the matrix TX X  (or TXX ) and

( ) ( ) ( )ˆ T Tr rank rank rank= = =X XX X X .
Remark:  Eqn. (4) can also be written as
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Application of SVD (e.g. in Matlab ®) to the data matrix X, eqn.
(1), yields that the rank of X is 2, and the matrix X can be
decomposed as

1
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-0.30144 " "1,-0.2919
-0.29302
-0.30999
-0.32996

" "1,

Tloading

score

=X

v

y

144444424444443

144424443

1

3

1

2

12

2

0.53687
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The above eqn. (6) implies that each row of the matrix X can be
written as a linear combination of the row vectors loading1 and
loading2, i.e.

{ {
3 3

1 2 3 1 1 2 2
" "2" "1 " "1 " "2

[ ]                     T T

scorescoreT loading loading

x x x y y= +v v

x
14243 14243 14243 (7)

Because V is orthonormal, eqn. (7) yields the sought eqn. (2), i.e.

3 0T =x v . (8)

q Loadings can be thought of as basic shapes that can
be used to represent the raw data

Note that the row vectors loading1 and loading2 in eqn. (7) are the
same for all rows of data triplets 1 2 3, ,x x x ;  they appear to be

                                                                
1 The analysis is valid for complex-valued matrices as well, with
Hermitian  in place of transpose.

related to the system and not to any individual wafer.  Therefore,
loading1 and loading2 can be thought of as two basic shapes
(Figure 4), whose linear combination (sum weighted by score
entries) can produce any of the 12 measured shapes .
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Figure 4 – Loadings, eqn. (6).  Because loadings are
orthonormal, the order of magnitude of their entries is 1.
The sign is unimportant.  The two shapes attempt to capture
the curvature in the etch rate profile.

q Monitoring scores gives a complete picture of the data
It follows from the preceding discussion that  one can simply
observe the scores (compressed data, values of principal
components – hence PCA), to capture all information about the
original data.  In other words, instead of looking at Figure 3, one
can look at Figure 5.

Figure 5 – Scores for the data in Figure 2, according to eqn.
(6).  Note that Score 3 is identically 0, which is precisely the
equation sought in eqn. (2).

q Eqn. ( ) 2rank =X  implies data points fall on a plane
Figure 6 shows 3-D plots of the data from two different
viewpoints.  The second viewpoint clearly shows that data fall on a
plane.  The new axes (not shown) in the figure) are produced by
multiplying V, eqn.(4), times each of the original axes.

 
Figure 6 – 2-D world in 3-D data (“collinearity”).

q Loadings can also be thought of as weights used to
relate original data to scores (compressed data)

An immediate corollary of eqn. (7) is that each of the data column
vectors x1, x2, x3 can be written as a linear combination of the
column vectors (“scores”) y1 and y2.  If the score vectors y1, y2 are
thought of as corresponding to two new variables, y1, y2, then y1, y2

are related to x1, x2, x3 as follows:  Because the loadings are
orthonormal, we can post-multiply eqn. (5) by vj to get
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or, row by row,

1[ ] TT
j n j j jy x x= ≡ =v x v v xL (10)

or, in vector/matrix form,

T= ⇔ =y V x x V y (11)

(The new variables y are also called principal components, and the
reason why will become clear in section 2.3.)

Thus, for this particular example we get, using eqn.(10), that
the two nonzero score variables are

1 1 2 3

-0.54865
[ ] -0.65112

-0.52443
y x x x

 
 =  
  

,  2 1 2 3

-0.52217
[ ] -0.22301

0.82317
y x x x

 
 =  
  

(12)

and that the last score variable should be trivially equal to zero, i.e.

3 1 2 3

-0.65293
[ ] 0.72548 0

-0.21764
y x x x

 
 = = 
  

(13)

which is the same as eqn. (8).

Figure 7 – Loadings as weights of original variables used to
construct new variables by linear combination.  The first two
bar charts present the exact same numbers as in Figure 4.

This gives us the second interpretation of loadings:  They are
the vectors of coefficients by which we weight the original
variables in linear combinations that produce a new set of
variables (the “scores”) or the linear relationships among the
original variables.  To emphasize this interpretation we are
showing the corresponding loadings in Figure 7.

q The preceding findings about X can be used to
monitor the system

If the system etches subsequent wafers in the same way, it is
reasonable to expect that data points 1 2 3( , , )x x x  will be

produced that are related as before , i.e. by eqn. (2).  That means,
equivalently, that if one first constructs 2 new variables 1 2,y y  in
terms of eqn. (10) (or, equivalently, (11)), then the value of the
residual error (cf. eqn. (7))

{ {
3 3

1 2 3 1 1 2 2
" "2" "1" "1 " " 2

[ ]               ˆ

( )

T

T T T

scorescore loading loading

T T

x x x y y
 
 = − +
  
 

= −

x

e v v

x PP x

14243 14243 14243 (14)

for each new data triplet should be equal to zero, or, equivalently,
2 0 ( ) 0ˆ T T T= = ⇔ − =e e e x I PP x (15)

where the matrix P consists of the first r columns of V.  (The
reason for using eqn. (15), instead of simply =e 0 , is that it can
easily be extended to handle noisy data, as will be shown below).

Consider now the new data shown in Figure 8 below.

Figure 8 – Data set from 10 new wafers.

Applying the test of eqn. (15) to the new data shown above yields
the results of Figure 9. It is clear that two data points (#7 and #8)
do not fall on the zero line as they should.  These points indicate
that the behavior of the system that etched these wafers is different
from before.

Figure 9 – Square errors for the 10 new data sets, Figure 8.

2.2 Noisy signals

q SVD on the noisy counterpart of X reveals similar
relationship among x1, x2, x3.

Table 1 – Noisy data

Consider that measurements of

1 2 3, ,x x x  are obtained with
measurement noise.  The data
of Table 1 are obtained (cf. eqn.
(1)).  SVD on the data of Table
1 yields singular values equal to
20219, 1206.5, 226.15 (cf.
eqn.(6)).  Corresponding eigen-
values (singular values squared)
are shown in Figure 10.  The
smallest singular value is two
orders of magnitude smaller

than the largest one, indicating that it is probably equal to zero.
But the second singular value is also an order of magnitude smaller
than the largest singular value.  Is it really non-zero or zero?  How
many singular values should be retained?  What is the underlying
rank of the data?  (Figure 11-b indicates that, viewed from a
certain viewpoint, the data appear to fall on a plane, verifying that
the smallest singular value is most probably zero.)

q How many singular values of X are really nonzero?
We need to understand how the singular values of the noisy data of
Table 1 are related to the singular values of the noiseless data in
Figure 3.  Let us call the noiseless data matrix Ξ.  Then

= Ξ +X E (16)
where E is a matrix that contains measurements errors.  Note that
for the data in Table 1

( ) 3 ( ) 2rank rank= > Ξ =X (17)
There is no closed-form expression that relates the singular values
of X, σX, to those of Ξ, σΞ, but there are asymptotic, Taylor-series-
type results that are valid for “small” E, and bounds such as ([1], p.
419):

max2
( ) ( ) ( )i i i

− Ξ ≤ =X E Eσ σ σ (18)

Note that no assumptions about the statistics of E need to be made
for eqn. (18) to be valid.  Eqn. (18) indicates that zero singular
values of Ξ will appear as “small” singular values of X.

How many of the “large” singular values of X are really
nonzero (cf. Figure 10)?  The answer should be such that − ΞX
should be a realization of the noise model assumed for the noise
matrix E, eqn. (16).  Two simple criteria for detecting the number
of essentially nonzero singular values of X are
(a) visual inspection of the singular value plot such as in Figure

10, and
(b) fidelity of reconstruction of the original data in X by use of a

reduced number of basis vectors (principal components, cf.
eqn. (7)).

# x1 x2 x3

1 2585 3373 3353
2 2874 3586 3374
3 2809 3311 2861
4 2759 3355 2562
5 3175 3602 2763
6 3071 3753 3258
7 3424 3933 3486
8 3368 3974 3263
9 3526 3887 2709
10 3523 4034 2735
11 3546 4209 2910
12 3666 4381 3417
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Figure 10 – Squared singular values (eigenvalues) for data
in Table 1.  (a) individual, (b) cumulative.

Figure 11 – 2-D world in noisy 3-D data.(cf. Figure 6).

q Singular values quantify the goodness of data fit by a
matrix of reduced rank

If the underlying structure of the data in Ξ is such that only a
“small” number of principal components is important, what is the
best estimate of Ξ (with rank r n< ) given the data in X?

Answering this question will allow us to construct scores and
loadings, and to monitor the system as subsequently etched wafers
arrive, in the same way as we did in the noiseless case.  The
difference is that what should have been ideally zero errors, eqn.
(14) should now be “small” (more in the sequel).

To find the best estimate Ξ̂  of Ξ given X  we can minimize
the distance between Ξ and X, i.e. find

( )
min

rank r nΞ = <
− ΞX (19)

It can be shown [2] that if the matrix norm that appears in eqn. (19)

is either the induced 2-norm  ( 2
2 max

2
maxˆi

≠
= =

v 0

Av
A

v
σ , where

2
2 ii v= ∑v  is the Euclidean vector norm) or the Frobenius

norm ( 2ˆF iji j a= ∑ ∑A  2
ii= ∑ σ )2 the minimization in eqn.

(19) produces the same Ξ̂  in terms of the SVD of X as

1
ˆ r T

i i ii=
Ξ = ∑ u vσ (20)

(cf. eqn. (5)).  Moreover, the optimal difference can be shown to be

2 2 1
( )

ˆmin i i r
rank r n

+
Ξ = <

− Ξ = − Ξ =X X σ (21)

and

2
1( )

ˆmin
n

F F r ii rrank r n
+= +Ξ = <

− Ξ = − Ξ = ∑X X σ (22)

Note that the singular vectors (loadings) of X could be very
different from the singular vectors (loadings) of Ξ [4].  Figure 12,
shows loadings for X.  Comparison with  Figure 4 and Figure 7
shows little difference.

                                                                
2 Both the induced 2-norm and the Frobenius norm are frequently
called Euclidean norm in literature!  The reason is that the
induced-2 norm is induced by a Euclidean vector norm, and the
Frobenius norm would be a Euclidean vector norm if the matrix A
were re-organized as a vector.

Figure 12 – Loadings(with error bounds) for noisy data of
Table 1 (by PLS-toolbox® [3]) (cf. Figure 4 and Figure 7).

To test whether the fit is generalizable, tests must be done,
such as a test on the PRESS (Prediction Error Sum of Squares)
statistic:  One datum is left out, a model that fits the remaining data
is computed, and the square error between the model prediction
and the datum left out is computed.  The process is repeated by
considering all data points, one by one, and finally summing the
square errors and comparing them to the total square error.

q Process monitoring by looking at residual errors (cf.
p. 3)

Once the relationship among x1, x2, x3 has been identified by the
counterpart of eqn. (8) with noisy loading v3, the value of the
residual error (i.e. counterpart of eqn. (14) for noisy loadings) for
each new data point (x1, x2, x3) arriving in the future can be
checked.  If the relationship among x1, x2, x3 remains the same,
then the residual error should be “small”.  This leads to the
counterpart of eqn. (15) for noisy data.  Specifically, if the residual
error is normally distributed (very often a reasonable assumption)

then 2 T=e e e  follows a chi-square distribution, from which one

can construct Q-confidence bounds [3] as (cf. eqn. (15))
2( )T T T= − <e e x I PP x δ (23)

2.3 Stochastic signals

q For multiple random variables principal components
are uncorrelated new variables, a few of which
capture most variance

SVD can provide additional insight if the vector variable x is
stochastic, i.e. it takes values according to a certain probability
distribution (the particular distribution is not important).  The
analysis is known as principal component analysis (PCA) [5].

Consider the random variable vector 1[ ]ˆ T
nx x=x L , and

assume, without loss of generality, that [ ]E =x 0 3 where E denotes

                                                                
3 If the average of x is not zero, a new deviation variable can
trivially be defined as [ ]E−x x .  There is much higher chance that
deviation variables (as opposed to original variables) are linearly
dependent.  Indeed, if the variables x satisfy the relationship

( ) =f x 0 , Taylor series expansion around [ ]E x  yields

( )
[ ]

( ) ( [ ]) [ ] ˆ
E

E E
=≈

∂
= ≈ + − = ⋅ ∆

∂ x x0

f
0 f x f x x x B x

x14243
which implies linearly dependent ∆x .
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expected value.  Denote the covariance matrix of x by

[ ]T n nE ×= ∈ℜC xx (24)
It can be shown [5] that we can use the modal matrix

[ ]1ˆ n=A a aL  of C  (i.e. the matrix whose columns are the
orthonormal eigenvectors of C) to construct a new, zero-mean,
vector random variable y as

1 1 1 1n n

T

n n n n n n

= ⇔ =y A x x A y (25)

(principal components) that has the following important property

( )
2

1
[ ] 0

var( ) max var
i

i j i

T
i i i

E y y

y

<

=
=

= =x
α

α λ , (26)

That is, each principal component, yi is a weighted sum of the
original variables x1, …, xn, (eqn. (25)) such that
(a) its variance is maximal and equal to the i-th eigenvalue of the

original covariance matrix C (eqn. (26)), and
(b) yi  is orthogonal to all previous principal components i jy − ,

2, 1,..., 1i j i≥ = −  (eqn. (26)).
There are various criteria for selecting the number of principal
components, as discussed above and in [5].

q SVD on covariance estimate produces values of
principal components

Because the matrix C  is unknown, it has to be estimated from data.
The best estimate of C is

1
1

n

mn
T

n n

m

m
≈

−
C X X (27)

where X is a matrix that contains the data for each random variable
in a column, as in eqn.(1).  Then, the eigenvalue/eigenvector pairs

( , )wκ  of 
1

1
T

m −
X X  are estimates of the eigenvalue/eigenvector

pairs ( , )aλ  of C, which implies that

(a) the eigenvectors w of 
1

1
T

m −
X X  (hence the estimates of

eigenvectors of C) are equal to the singular vectors v of X
(eqn. (4)) (i.e. loadings;  cf. discussion about the
interpretation of loading in p. 2), and

(b) the eigenvalues of 
1

1
T

m −
X X  (hence the estimates of

eigenvalues of C) are equal to ( 1)m −  times the squares of
the singular values of X
Consequently, one can look at the values of

2 2

2 2
1 1[ ]

i i i
T

r rE
= =

+ + + +x xL L
σ σ λ

σ σ λ λ
  1, ,i r= L (28)

to assess what percentage of the total variance  of x, [ ]TE x x , is
captured by each of the principal components.  By looking at the
few largest principal components, one can monitor (in the SPC
sense) the system that produces the data
(a) visually, e.g., by plotting PC1 vs. wafer #, PC2 vs. wafer #,

etc. or PC1 vs. PC2 vs. PC3 (recall that principal components
are ideally independent of one another).

(b) numerically, by monitoring statistics such as the Hotelling
statistic discussed below.

q Principal components are directly related to
multivariate SPC

If the zero-mean vector random variable x has (non-degenerate)
covariance C, then one can construct the Hotelling (scalar) random
variable

{ {
2

1 1 1

1
ˆ

T

n
T T T T i

ii

y− − −

=
= Λ = Λ = ∑

yy
x C x x A A x y y

λ
(29)

i.e. the Hotelling random variable is the sum of n independent
random variables, 2 /i iy λ .  If yi are normally distributed, then

( )2 /i iy∑ λ  is chi-square distributed.  We stress that the matrix C,

as stated above, is assumed to be non-degenerate, so that all
eigenvalues of C are non-zero and C -1 exists in eqn. (29).  If some
eigenvalues are zero, then we stop the summation in eqn. (29) at r,
the rank of C, to ensure 0i ≠λ .

Note that the new variable vector y defined in eqn. (29) is
precisely the vector of principal components, as defined in eqn.
(25).  Therefore, when using PCA to monitor random variables,
one can use the Hotelling T2 statistic to perform a multivariate chi-
square test [3]

2
1 2

1

r
T T i

r
i i

y−

=

Λ = ≤∑x P P x χ
λ

(30)

where the matrix P consists of as many columns of V as the
number of principal components retained (cf. eqn. (15)).  The

values of the principal components yi for which  
2 2

1

r

i ii
y

=
≤∑ λ χ

are inside an r-dimensional ellipsoid with axes 2
iλ χ .  If up to 3

principal components are retained, then one can plot these
ellipsoidal bounds and visually observe whether subsequent values
of the principal components fall inside the ellipsoid, for
multivariate SPC.  An example will be shown with the actual wafer
data in the sequel.

q Lumping apples and oranges as “fruits” is OK but
should be done with caution

The variables 1 2 3, ,x x x  in the preceding example all refer to etch

rate.  Therefore it is natural to express their values in the same
units.  It is possible, however, to consider sets of random variables
of different nature, e.g., etch rate, power, pressure, flowrate, etc.
In that case, the units of measurement (scaling) become important
when performing PCA for these variables, in that different scalings
can produce arbitrarily different eigenvalues of the covariance
matrix C.

One straightforward way to avoid this ambiguity is to
perform PCA on the correlation matrix, instead of on the
covariance matrix.  But it has to be stressed that the correlation
matrix weights each variable according to its variance, whether the
latter is large or small.

Another criterion for obtaining meaningful PCA results when
dealing with variables for which there is experimental
measurement error is to ensure that all errors are independent and
of the same magnitude (cf. eqn. (19)).

3 CASE STUDY

Etch profiles (49 measurement points 1 49,...,x x ) from 9 different

tools were collected, thus creating a 9 49×  matrix X.  Figure 13
indicates that 2 or 3 principal components result in less that 10% or
5% error, respectively.  Corresponding scores are shown in Figure
14.  Loadings are shown as weights in Figure 15 and as basis
surfaces in Figure 16.  The quality of reconstruction of the original
data by 3 principal components is excellent, in that it captures
curvature characteristics, as indicated by the samples shown in
Figure 17.  Figure 18 shows the Q-test (eqn. (23)) and Hotelling
T2-test (eqn. (30)), revealing no outliers.  These tests can be used to
monitor future wafers, i.e. if future points fall within the bands
indicated in Figure 18, then future wafers are etched “similarly” to
those contained in the original set.
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Figure 13 – Cumulative fraction of total variance captured
by principal components (left) for variables 1 49,...,x x  scaled

by subtraction of sample averages 1 49,...,x x  (right).

Figure 14 – Scores for the first 3 principal components (cf.
Figure 5). (Confidence bounds by PLS-toolbox® [3].)

Figure 15 – Loadings as weighting coefficients (cf. Figure 7)
for all 9 principal components.  Semidisk size and orientation
denote magnitude and sign, respectively.

  

  

  
Figure 16 – Loadings as contour surfaces (cf. Figure 4) for
the first 3 principal components.  Each loading is viewed
from the top and from an angle.

Figure 17 – Original etch profile (column 1), etch profile
reconstructed from 3 principal components (column 2) and
approximation error (column 3) for two sample wafers (cf.
Figure 1)

Figure 18 – Residual square errors and Q-test (cf. eqn. (23))
and values of the Hotelling statistic and T2-test (cf. eqn. (30))
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