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ABSTRACT: We provide a smooth introduction to reduced-rank analysis via singular-value decomposition, and show how it can be used to
monitor images of etched silicon wafers. Anindustria case study is discussed.

1 INTRODUCTION

Spatialy uniformity is necessary for high yields in a number of
crucia processes of the semiconductor manufacturing industry,
such as etching or deposition of thin films and chemical-
mechanica planarization (CMP). In plasma etching, good spatial
uniformity is the result of both appropriate design of etching tools
as well as development of successful recipes. For ether of these
tasks, the designer or operator must be able to assess spatial
uniformity characteritics, understand similarities and differences
between tools or recipes, and apply criteria for the monitoring of
spatial uniformity from tool to tool or run to run. Because
uniformity is usually expressed in terms of a single number (e.g.,
3s/[average etch depth]) very different spatia uniformity profiles
may result in the same numerical value of uniformity (Figure 1),
thus masking important information that could be useful in a
number of ways related to tool or recipe performance.
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Figure 1 — Etch rate profiles on 300-mm wafer surface,
interpolated over 49 measurement points (black dots). Both
wafers correspond to virtually the same numerical uniformity
value, but exhibit very different etch patterns.

In this presentation we provide a brief tutorial overview of
the fundamentals of reduced-rank anaysis, and show how it can be
applied to the analysis, comparison, and monitoring of images
corresponding to etch patterns of silicon wafers, as well as
multivariate statistical process control.

2 COMPRESSION OF COLLINEAR DATA VIA
SINGULAR VALUE DECOMPOSITION (SVD)

2.1 Basiccase: Deterministic signals, no noise

Figure 2 — Etch rate measurement points

Q Anunrealistic but instructional example setting

Suppose that etch rates, x,X,,x, are exactly measured at three
points (edge/center/edge) along the diameter of a wafer, as shown
in Figure2. Aswe collect data, wafer after wafer, we want to be
able to use numbers that describe how similar the etch rate profiles
are, and whether they are the result of a consistently performing

process.

QO Noiseless data are collected

Notethat, for now, the dataare assumed to be exact, i.e. thereisno
measurement noise. A set of data collected is shown in the matrix
X below, and Figure 3.
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Figure3 —Hypothetical etch rate profiles for 12 wafers (left)
and Hypothetical local etch rates vs. wafer # (right).

Q Data collinearity and computation of matrix rank
Arethevariables x,x,, X, linearly dependent? |.e. istherea

nonzerovector a=[a, a, a,]" suchthat

ax +ax,+ax, =00 x'a=0 @)
If 50, then the data satisfy the relationship (model equation)
ax,+ ax,+ax, =0U Xa=0 fora* 0 3

E.g., if two of the column vectors x4, Xz, X3 (in A% ) are linearly
independent, the rank of the full data set matrix X will be 2, and
we will be able to express each of the column vectors xi, X2, X3 (in
A* ) asalinear combination of two basisvectorsys, y» (in A*).

A numerically robust method to check whether egn. (3) is
vaid isthe singular value decomposition (SVD).

Sidebar — Singular value decomposition (SVD)
Theorem: A matrix X of dimensions m” n can be factorized as

n m n n
S1
J .
X U lls, ||V @
m m m n
where U =[u, - u JTA™™and V=[v, VT AT ae




orthonormal matrices’ (i.e. UUT =U'U=1,W' =V'V =1)
whose columns are the (normalized) eigenvectors of the matrices
XXT and XTX , respectively; s,3---3 s, arethe square roots
of the nonzero eigenvalues of the matrix X™X (or XXT) and
r 2 rank(X) =rank(XX") =rank(X 'X) .

Remark Eqgn. (4) can aso be written as
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Application of SVD (eg. in Matlab ®) to the data matrix X, egn.
(1), yields that the rank of X is 2, and the matrix X can be
decomposed as
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"loading"3, v

+
[©oocooocoooooo]

==
"score"'3, y;

The above egn. (6) implies that each row of the matrix X can be
written as a linear combination of the row vectors loadingl and
loading?, i.e.

X % %= Y - - @

XT snore "1 loading'l. "loading"1 wore "2 loadng"2 " loading" 2
Because V is orthonormal, egn. (7) yields the sought egn. (2), i.e.
xTvy=0. )

O Loadings can be thought of as basic shapes that can

be used to represent the raw data
Notethat therow vectors loadingl and loading2 in egn. (7) are the
same for all rows of data triplets x,x,,%,; they appear to be

! The analysisis valid for complex-valued matrices as well, with
Hermitian in place of transpose.

related to the system and not to any individual wafer. Therefore,
loadingl and loading2 can be thought of as two basic shapes
(Figure 4), whose linear combination (sum weighted by score
entries) can produce any of the 12 measur ed shapes.
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Figure 4 — Loadings, eqn. (6). Because loadings are
orthonormal, the order of magnitude of their entries is 1.
The sign is unimportant. The two shapes attempt to capture
the curvaturein the etch rate profile.

0 Monitoring scores gives a complete picture of the data
It follows from the preceding discussion that one can simply
observe the scores (compressed data, values of principal
components— hence PCA), to capture all information about the
original data. In other words, instead of looking at Figure 3, one
can look at Figure5.
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Figure5 — Scoresfor thedata in Figure 2, according to egn.
(6). Note that Score 3isidentically O, which is precisely the
equation sought in egn. (2).

Q Egn. rank(X)=2 implies data pointsfall on a plane
Figure 6 shows 3-D plots of the data from two different
viewpoints. The second viewpoint clearly showsthat datafall on a
plane. The new axes (not shown) in the figure) are produced by
multiplying V, eqn.(4), times each of the original axes.
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Figure6 —2-D worldin 3-D data (“ collinearity” ).

O Loadings can also be thought of as weights used to
relate original data to scores (compressed data)

Animmediate corollary of egn. (7) is that each of the data column
Vectors xi, Xz, X3 can be written as a linear combination of the
column vectors (“scores’) y:1 and ye. If the score vectors yi, y. are
thought of as corresponding to two new variables, yi, y», then yi, y»
arerelated to X, %, % as follows: Because the loadings are
orthonormal, we can post-multiply egn. (5) by v; to get

n 1

"score" |



or, row by row,
Y, =% %]V, 0 Xy, = v X (10)
or, in vector/matrix form,

X

(e}
P
11

yl=| VT vy (11)

(Thenew variables y are also caled principal components, and the
reason why will become clear in section2.3.)

Thus, for this particular example we get, using eqn.(10), that
the two nonzero score variables are

eO 548651 eO 52217u
Y1 =0 % Xl 0. 65112“ ¥2=[% % %] §0. 22301“(12)
g—O 524433 g) 82317 {
and that the last score variable should beftrivialy equal to zero, i.e.
é0. 65293u
Y5 =[x % %] 972548 =0 (13)
gO 21764g

whichisthesameaseqn (8) R R
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Figure7 — Loadings as weights of original variables used to
construct new variables by linear combination. The first two
bar charts present the exact same numbersasinFigure4.

This gives us the second interpretation of loadings. They are
the vectors of coefficients by which we weight the original
variables in linear combinations that produce a new set of
variables (the “scores’) or the linear relationships among the
origina variables. To emphasize this interpretation we are
showing the corresponding loadingsin Figure 7.

Q The preceding findings about X can be used to

monitor the system
If the system etches subsequent wafers in the same way, it is
reasonable to expect that data points (x,x,,%;) will be
produced that arerelated asbefore, i.e. by egn. (2). That means,
equivalently, that if one first constructs 2 new varigbles y;,y, in

terms of egn. (10) (or, equivaently, (11)), then the value of the
residual error (cf. eqn )
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sore "Ly aing "1 "loading "1 soore ‘2. "loading" 2 (14)
=(x- PPTx)
for each new data triplet should be equal to zero, or, equivaently,
lef =ee=00 x"(I- PP )x=0 (15)

where the matrix P consists of the first r columns of V. (The
reason for using egn. (15), instead of smply e =0, is that it can
easily be extended to handle noisy data, as will be shown below).
Consider now the new data shown in Figure8 below.
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Figure8 — Data set from 10 new wafers.

Applying thetest of egn. (15) to the new data shown above yields
theresults of Figure 9. It is clear that two data points (#7 and #8)
do not fall on the zero line as they should. These points indicate
that the behavior of the system that etched these wafers is different
from before.
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Figure9 — Sguare errorsfor the 10 new data sets, Figure8.

2.2 Noisysignals

Q SVD onthe noisy counterpart of X reveals similar
relationship among Xy, Xp, X3

Table1 —Noisy data

X1 X2 X3 Consider that measurements of

2585 3373 3353 X, %, X3 a@re obtained with

2874 3586 3374 measurement noise. The data

2809 3311 2861 of Table 1 are obtained (cf. eqgn.

2759 3355 2562 (1)). SVD on the data of Table

S175 | 8602 | 2763 | 3 yieldssingular valuesequal to

2070 L STS8 L 9B | 50219, 12065, 226.15 (cf.

3424 3933 3486 o
eqgn.(6)). Corresponding eigen-

3368 3974 3263 )
vaues (singular values squared)

3526 3887 2709 jular\
are shown in Figure 10. The

2l8|e|o|~]o|a]s|w|n |- #

3523 4034 2735
3546 4209 2910 smallest singular value is two
orders of magnitude smaller
than the largest one, indicating that it is probably equal to zero.
But the second singular vaue is also an order of magnitude smaller
than the largest singular value. Isit realy non-zero or zero? How
many singular vaues should be retained? What is the underlying
rank of the data? (Figure 11-b indicates that, viewed from a
certain viewpoint, the data appear to fall on a plane, verifying that
the smallest singular value is most probably zero.)

Q How many singular values of X arereally nonzero?
We need to understand how the singular values of the noisy data of
Table 1 are related to the singular values of the noiseless data in
Figure 3. Let us cal the noiseless datamatrix X. Then

X=X+E (16)
where E is a matrix that contains measurements errors. Note that
for thedatain Table 1

rank(X)=3>rank(X )= 2 (17)
There is no closed-form expression that relates the singular values
of X, sx, tothose of X, sx, but there are asymptotic, Taylor-series-
typeresultsthat arevalid for “small” E, and bounds such as (1], p.
419):

5i(X)-s; (X)|£||E|i2 =S 1 E) (18)
Note that no assumptions about the statistics of E need to be made
for egn. (18) to be valid. Eqgn. (18) indicates that zero singular
valuesof X will appear as“small” singular values of X.

How many of the “large” singular values of X are redly
nonzero (cf. Figure 10)? The answer should be such that X - X
should be a redization of the noise model assumed for the noise
matrix E, egn. (16). Two simple criteria for detecting the number
of essentially nonzero singular values of X are
(a) visud inspection of the singular value plot such asin Figure

10, and
(b) fidelity of reconstruction of the original datain X by use of a

reduced number of basis vectors (principal components, cf.

eqn. (7)).
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Figure 10 — Squared singular values (eigenvalues) for data
in Tablel. (&) individual, (b) cumulative.

Figure 11 — 2-D world in noisy 3-D data.(cf. Figure 6).

Q Sngular values quantify the goodness of data fit by a
matrix of reduced rank

If the underlying structure of the data in X is such that only a
“small” number of principal components is important, what is the
best estimate of X (with rank r <n') given the datain X?

Answering this question will alow us to construct scores and
loadings, and to monitor the system as subsequently etched wafers
arrive, in the same way as we did in the noisdess case. The
difference is that what should have been idedlly zero errors, egn.
(14) should now be “small” (morein the sequel).

Tofind thebest estimate X of X given X we can minimize
the distance between X and X; i.e. find

min X - Xl (19)
rank(X)=r<n
It can be shown[2] that if the matrix norm that appearsin egn. (19)
|AV|2

is either the induced 2-norm (llAli2 = max
Vl

o v,

vl =,féivi2 is the Euclidean vector norm) or the Frobenius

norm (llAl i,’éi 8 ;af =y&;s7)” the minimization in egn.

(19) produces the same X in terms of the SVD of X as

=S e ,» Where

X=3 irzlsiUiViT (20)

(cf. egn. (5)). Moreover, the optimal difference can be shown to be

min  IX- Xz =X - Xk2 =541 (21)
rank(X)=r<n

and

, NV ,o n 2
rank?)1<|)r1=r<nlx A =X Xe =& s A (2)

Note that the singular vectors (loadings) of X could be very
different from the singular vectors (loadings) of X [4]. Figure 12,
shows loadings for X. Comparison with Figure 4 and Figure 7
shows little difference.

2 Both the induced 2-norm and the Frobenius norm are frequently
caled Euclidean norm in literature! The reason is that the
induced-2 norm is induced by a Euclidean vector norm, and the
Frobenius norm would be a Euclidean vector norm if the matrix A
were re-organized as a vector.
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Figure 12 — Loadings(with error bounds) for noisy data of
Table 1 (by PLS-toolbox® [3]) (cf. Figure4 and Figure7).

To test whether the fit is generalizable, tests must be done,
such as a test on the PRESS (Prediction Error Sum of Squares)
statistic: One datum isleft out, amodel that fits the remaining data
is computed, and the square error between the model prediction
and the datum left out is computed. The process is repeated by
considering all data points, one by one, and finally summing the
sguare errors and comparing them to the total square error.

O Process monitoring by looking at residual errors (cf.

p.3)
Once the relationship among xi, %, X3 has been identified by the
counterpart of egn. (8) with noisy loading s, the value of the
residual error (i.e. counterpart of egn. (14) for noisy loadings) for
each new data point (., Xo, %) arriving in the future can be
checked. If the relationship among i, X, % remains the same,
then the residual error should be “small”. This leads to the
counterpart of eqn. (15) for noisy data. Specificaly, if the residual
error is normally distributed (very often a reasonable assumption)
then ||e||2 =e'e follows a chi-square distribution, from which one
can construct Q-confidence bounds [3] as (cf. egn. (15))

e'e=x"(I - PPT)x<d? ()
2.3 Stochastic signals

Q For multiple random variables principal components
are uncorrelated new variables, a few of which
capture most variance

SVD can provide additional insight if the vector variable x is

stochastic, i.e. it takes values according to a certain probability

distribution (the particular distribution is not important). The

analysisisknown as principal component analysis (PCA) [5].
Consider the random variable vector x =[x - x,]T, and

assume, without loss of generdlity, that E[x] = 0 whereE denotes

3 If the average of x is not zero, a new deviation variable can
trivialy bedefined as x - E[x]. Thereis much higher chance that

deviation variables (as opposed to original variables) are linearly
dependent. Indeed, if the variables x satisfy the relationship

f(x) =0, Taylor series expansion around E[x] yields

(x- E[x]) =B>xDx

x=E[X]

0=f(x) » F(E[x]) + 1

which implies linearly dependent Dx .



expected value. Denote the covariance matrix of x by

C=E[xx"]1 A"" (24)
It can be shown [5] that we can use the moda matrix
A=[a - a] of C (i.e the matrix whose columns are the

orthonormal eigenvectors of C) to construct a new, zero-mean,
vector random variabley as
n

1 1 1 1
y| =| AT HOH: A |y (25)
n nk—n n nk—n

(principal components) that has the following important property

var(y;) = max var(aiTx) =1h (26)
E[Y\ijz<i 1=0

That is, each principal component, y; is a weighted sum of the

original variables x, ..., X, (€qn. (25)) such that

(a) itsvarianceismaximal and equal to the i-th eigenvalue of the
original covariance matrix C (egn. (26)), and

(b) yi isorthogona to al previous principal components vy, ,
i32j=,.,i-1(egn. (26).

There are various criteria for selecting the number of principal

components, as discussed above and in [5].

Q SVD on covariance estimate produces values of
principal components

Becausethematrix C is unknown, it has to be estimated from data.

The best estimate of C is

n m
[c],» - 1nH @)

where X isamatrix that contains the data for each random variable
inacolumn, asin egn.(1). Then, the eigenvalue/eigenvector pairs

(k ,w) of leXTX are estimates of the eigenval ue/eigenvector
pairs (I ,a) of C, whichimpliesthat
(@) theegenvectors w of mil XX (hence the estimates of

eigenvectors of C) are equa to the singular vectors v of X
(egn. (4)) (i.e. loadings; cf. discusson about the
interpretation of loading in p. 2), and

(b) the eigenvalues of ﬁXTX (hence the estimates of

eigenvalues of C) areequal to (m- 1) times the squares of
thesingular values of X
Consequently, one can look at the values of

s? s,? I )
— - =—L—= ! =11 (28)
Sy t+e+s” E[xx] I 4+,

to assess what percentage of the total variance of x, E[x'x], is

captured by each of the principal components. By looking at the

few largest principal components, one can monitor (in the SPC

sense) the system that produces the data

(a) visudly, eg., by plotting PC1 vs. wafer #, PC2 vs. wafer #,
etc. or PC1 vs. PC2 vs. PC3 (recall that principal components
are idedlly independent of one another).

(b) numericaly, by monitoring statistics such as the Hotelling
statistic discussed below.

Q Principal components are directly related to
multivariate SPC
If the zero-mean vector random variable x has (non-degenerate)

covariance C, then one can construct the Hotelling (scalar) random
variable

n 2
xTC'lxz(KI,AL’IAT_y,inL‘lyzé_T—' (29)
y' y i=1 i

i.e. the Hotelling random variable is the sum of n independent
random variables, y?/I,. If y are normaly distributed, then

a (yi2 /1 ) is chi-square distributed. We stress that the matrix C,

as stated above, is assumed to be non-degenerate, so that all
eigenvalues of C are non-zero and C ™ exigts in egn. (29). If some
eigenvalues are zero, then we stop the summationinegn. (29) & r,
therank of C,toensure |, * O .

Note that the new variable vector y defined in egn. (29) is
precisely the vector of principal components, as defined in egn.
(25). Therefore, when using PCA to monitor random variables,
one can use the Hotelling T statistic to perform a multivariate chi-
square test [3]

r 2
xPL, Px=§ d£c? (0)

i=1
where the matrix P consists of as many columns of V as the
number of principal components retained (cf. egn. (15)). The

values of the principal components v for which & |_ y?/I, £ c?

are inside an r-dimensional elipsoid with axes 1,c?. If up to 3

principal components are retained, then one can plot these
dlipsoidal bounds and visualy observe whether subsequent values
of the principal components fal inside the dlipsoid, for
multivariate SPC. An example will be shown with the actual wafer
datain the sequel.

Q Lumping applesand oranges as “ fruits’ is OK but
should be done with caution
Thevariables x,x,,X, in the preceding example al refer to etch

rate. Therefore it is natural to express their values in the same
units. It is possible, however, to consider sets of random variables
of different nature, e.g., etch rate, power, pressure, flowrate, etc.
In that case, the units of measurement (scaling) become important
when performing PCA for these variables, in that different scalings
can produce arbitrarily different eigenvalues of the covariance
matrix C.

One straightforward way to avoid this ambiguity is to
perform PCA on the correlation matrix, instead of on the
covariance matrix. But it has to be stressed that the correlation
matrix weights each variable according to its variance, whether the
latter is large or small.

Another criterion for obtaining meaningful PCA results when
dedling with variables for which there is experimental
measurement error is to ensure that all errors are independent and
of the same magnitude (cf. egn. (19)).

3 CASE STUDY
Etch profiles (49 measurement points x,...,Xsq ) from 9 different

tools were collected, thus creating a 9” 49 matrix X. Figure 13
indicatesthat 2 or 3 principal componentsresult in less that 10% or
5% error, respectively. Corresponding scores are shown in Figure
14. Loadings are shown as weights in Figure 15 and as basis
surfaces in Figure16. The quality of reconstruction of the original
data by 3 principal components is excellent, in that it captures
curvature characterigtics, as indicated by the samples shown in
Figure 17. Figure 18 shows the Q-test (egn. (23)) and Hotelling
T>-test (egn. (30)), revealing no outliers. Thesetests can be used to
monitor future wafers, i.e. if future points fal within the bands
indicated in Figure 18, then future wafers are etched “similarly” to
those contained in the original set.



Figure 13 — Cumulative fraction of total variance captured
by principal components (l&ft) for variables x;,...,X,9 scaled
by subtraction of sample averages %,...,X49 (right).
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Figure 14 — Scores for the first 3 principal components (cf.
Figure5). (Confidence bounds by PL S-toolbox® [3].)
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Figure 15 — Loadings as weighting coefficients (cf. Figure 7)
for all 9 principal components. Semidisk size and orientation
denote magnitude and sign, respectively.
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Figure 16 — Loadings as contour surfaces (cf. Figure 4) for
the first 3 principal components. Each loading is viewed
fromthe top and froman angle.
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Figure 17 — Original etch profile (column 1), etch profile
reconstructed from 3 principal components (column 2) and
approximation error (column 3) for two sample wafers (cf.

Figurel)
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Figure 18 — Residual square errors and Q-test (cf. egn. (23))
and values of the Hotelling statistic and T-test (cf. egn. (30))
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