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Abstract
In this work we develop a rigorous and general theory as well as an associated
efficient computational methodology that addresses the question of when and
what linear control is adequate for a nonlinear process.  A number of computer
simulation examples illustrate the power of the proposed approach.  Several
potential future developments are outlined.

1 Introduction
Feedback control of chemical processes that are assumed to behave linearly has a long history of
research and successful industrial applications.  From single-input-single-output proportional-
integral-derivative (SISO PID) controllers to plantwide model-predictive control (MPC) systems
(Qin and Badgwell, 1997), feedback control systems that implicitly or explicitly rely on the
premise of linear process behavior are to be found in every chemical plant.  Underlying this
premise are two fundamental assumptions (Slotine and Li, 1991), namely

a. process dynamics are inherently linear and/or
b. the controlled process will be operating closely enough to a steady state for its dynamic

behavior to be considered approximately linear.
The premise of linear process dynamics is very often useful.  Its obvious appeal relies on greatly
facilitating a number of control oriented tasks, such as model development, controller design,
control system implementation, and maintenance.  It has found wide applicability in a number of
process industries (Qin and Badgwell, 2000;  Nikolaou, 1997).  However, there are important
instances for which it may be violated, such as

- regulator-control problems where the process is highly nonlinear and frequently
perturbed far from its steady state by large disturbances (e.g., pH control), and

- servo-control problems where the operating points change frequently and span a
sufficiently wide range of nonlinear process dynamics (e.g., polymer manufacturing,
ammonia synthesis).

Such instances are not uncommon in chemicals, polymers, natural gas processing, and pulp and
paper plants (Qin and Badgwell, 2000), thus at times necessitating nonlinear control algorithms.
As a historical aside, it is interesting to note that an early academic publication that introduced
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what today would be called nonlinear MPC, explicitly recognizes and deals with the issue of
nonlinearity for model-based control of a distillation column through on-line optimization (Rafal
and Stevens, 1968).

The development, implementation, and maintenance costs of nonlinear control algorithms
are usually substantially higher than those of linear control algorithms for the same process.
Therefore, before one undertakes the development of a nonlinear control system for a given
nonlinear process, one must carefully examine the limits of linear control performance by
resolving the following basic question:

For a given process, is linear control adequate or would nonlinear control be necessary?
In the context of the above discussion on control system design and assumptions (a) and (b), the
above basic question entails the following questions:

- How nonlinear are the inherent dynamics of a nonlinear process?
- How close to a steady state should a nonlinear process operate to behave almost

linearly?
Attempts to answer the above questions have appeared in literature in recent years, as discussed
in section 3.2.  Given the many facets in which nonlinearity can manifest itself, it is not
surprising that a number of creative approaches, often attacking the problem from widely
differing angles, have been proposed by various investigators.  Such approaches concentrate on
the inherent nonlinearity of the open-loop system (process and/or controller) over different
operating ranges (Nikolaou, 1993; Allgöwer, 1995;  Sun and Kosanovich, 1988;  Guay, 1996;
Stack and Doyle, 1997;  Helbig et al., 2000).  Various nonlinearity measures and indices have
been accordingly proposed, the intention being to be able to quantify process nonlinearity in
terms of a single number.  The premise of these approaches is that if a nonlinear open-loop
system is “far” from a linear one, then linear control will, most probably, be inadequate for the
closed loop.  While that may frequently be true, proximity of a nonlinear open-loop system to a
linear one is, in general, neither necessary nor sufficient for adequacy of linear control of a
nonlinear system.  Therefore, this kind of nonlinearity quantification may be helpful for closed-
loop analysis (because the nonlinearity of the closed-loop can always be quantified using any of
the proposed approaches), but may be at best incomplete for control system synthesis.

Yet, one would expect that there must be some connection between the nonlinearity
magnitude of a process to be controlled and the nonlinearity magnitude of a closed loop
containing a linear controller designed for that process.  This expectation, in turn, raises the
following questions:

- How does the nonlinearity magnitude of a process affect the nonlinearity magnitude of
the closed loop if a linear controller is to be used?

- How does the choice of a linear controller affect the nonlinearity magnitude of the closed
loop for a given nonlinear process?

Answers to the above two questions should provide insight into what are the limits of linear
control, rather than just quantifying the nonlinearity of a closed loop for a given linear controller.

To date, both of the above questions have remained rather unresolved.  Of course,
answers to related control problems that treat nonlinearity as modeling uncertainty have appeared
under various guises in the vast literature of robust control theory.  Yet, a clear answer to the
above two questions is lacking.

In this work, we develop a theory and an associated computational methodology that
attack the above basic questions.
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The theory is both rigorous and general.  It relies on representation of a nonlinear process
as an operator that maps input signals to output signals (eqn. (3)).  As such, the theory is
applicable to an extremely wide class of nonlinear processes.  Using that theory, the nonlinearity
of a closed loop is defined as the distance between a closed loop with nonlinear process/linear
controller and a suitably defined ideal linear closed loop (Definition 1) that reflects control
objectives.  The basic result of this theory is Theorem 1, which places bounds on closed-loop
nonlinearity that depend both on the nonlinearity of the controlled (open-loop stable) process and
on a linear controller guaranteed to stabilize the nonlinear process.  Computation of these bounds
can be performed rigorously using Theorem 2, although the required computations may be
complicated.  Approximations to these bounds can be computed using a computationally
efficient and intuitive approach based on Corollary 3, as described in section 4.5.  More
importantly, this approach enables the designer to easily design linear stabilizing controllers with
predictable effects on closed-loop nonlinearity (hence performance) for explicitly characterizable
regions of process operation, without having to assume process operation near a steady state.
Hence, limits of linear controller performance, as well as the linear controllers that reach these
limits, can thus be determined.  Process information needed in these computations is multiple
linear time-invariant process models, each model being valid around a steady state within a range
of process operation.  Thus, the proposed theory and associated computational methodology also
create a firm basis and establish novel ways for use of multiple linear models in linear controller
design, an approach that has been repeatedly proposed by several authors on the basis of intuitive
arguments.

In the sequel, we first provide a number of motivating examples in section 2.  In section 3
we provide a very brief overview of the nonlinear operator analysis framework used in this work
(section 3.1), as well as a succinct review of previous efforts on nonlinearity quantification
(section 3.2) that are relevant to this work.  Our main results are presented in section 4.  Section
5 shows a number of examples that demonstrate how our results can be used in practice to
resolve questions such as those raised by the motivating examples of section 2. Section 6
summarizes our results, puts them in perspective, identifies many questions that are still open,
and proposes promising directions for future work.

2 Motivating Examples
The following motivating examples raise a number of questions and set the stage for the
development of the theory and methodology presented in section 4.  Details on these examples
and resolution of the questions raised in this section are provided in section 5.

2.1 Motivating Example 1
Consider the exothermic reaction A B→  in a system of two jacket-cooled continuous stirred-
tank reactors (CSTR) in series (Henson and Seborg, 1990), as described in Example 1 of the
subsequent section 5.  The concentration of the reactant at the exit of the second CSTR, CA2, is
the controlled variable, and the coolant flow rate qc (common for both reactors) is the
manipulated variable.  The dashed line in Figure 2 shows the response of CA2 (in deviation from
its steady state value of -3

2 5.3 10  mol/LA sC = × ) resulting from a step change in the input.  CA2

eventually deviates from its steady-state value by 80%.  When the linearization of this system
around the above steady state is subjected to the same step change in the input, the output
corresponding to the solid line in Figure 2 results.  The system appears to be fairly nonlinear.
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When linear internal-model control (IMC) with IMC-filter time-constant 10λ =  (eqn.
(40)) (Morari and Zafiriou, 1989, p. 65) is used to effect a pulse setpoint change of 34.2 10−+ ×
mol/L (+80% of the steady-state value) on CA2, we get the closed-loop responses of Figure 3,
where the dashed line corresponds to the actual output of the nonlinear closed loop, while the
solid line corresponds to the closed-loop output that would be obtained if the plant were linear.
Figure 4 depicts the same situation when the IMC-filter time-constant is 1λ = .  It is clear that the
closed-loop response is virtually linear when 1λ = , even though the open-loop system is fairly
nonlinear when the output is steered to the same final value.
- How does feedback alter nonlinearity?
- By how much?
- Is the decrease of closed-loop nonlinearity universal for decreasing values of the IMC-filter

time constant=λ?
- How small could λ be made without jeopardizing closed-loop stability?

2.2 Motivating Example 2
Continuing on Example 1 of section 5, Figure 5 shows the closed-loop response of CA2 for a
pulse setpoint change of 35.2 10−+ ×  mol/L (+100% of the steady-state value) when 1λ = .  It is
clear that the actual nonlinear response (dashed line) is far from the ideal linear response (solid
line) after approximately time 70.
- Why is Figure 5 so different from Figure 4?
- What setpoint changes would not create large discrepancies between the actual nonlinear

closed-loop behavior and the ideal linear behavior?
- How would such setpoint changes depend on the choice of linear feedback controller?
- Would phenomena similar to those in Figure 5 appear in Figure 4 if the pulse of Figure 4

lasted much longer?

2.3 Motivating Example 3
In Example 3, section 5, the system of Example 1 is considered, with addition of time delay to
actual output measurements.  Such delay may be inherent, for example due to the presence of an
on-line composition analyzer.  The control designer designs a linear IMC controller for the
linearized model of the nonlinear process, without taking the measurement delay into account.
Figure 9 shows how CA2 would respond to a setpoint step change if the plant were linear, there
were measurement delay of 5 time units, and the above linear IMC controller with 0.1λ =  were
used.  The design appears to be fairly robust to the presence of measurement delay.  However,
when the same controller is applied to the actual nonlinear system with the same measurement
delay, very unsatisfactory (unstable) response results, as seen in Figure 7.  Retuning the IMC
controller to 10λ =  appears to solve the robustness problem as seen in Figure 8.
- Given that overly aggressive IMC tuning is known to compromise closed-loop robustness,

how, exactly, does the linear IMC design work for Figure 8 and fail for Figure 7?
- How could robustness considerations be explicitly incorporated into linear controller

synthesis for nonlinear processes?

2.4 Motivating Example 4
Consider the irreversible exothermic reaction A B→  in a CSTR, as discussed in Example 4,
section 5.  The controlled output is the concentration of the reactant A in the effluent, CA, and the
manipulated input is the feed flow rate.  The CSTR has inverse-response dynamics.  Figure 10
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shows the closed-loop responses of CA to step-changes in the setpoint, when IMC based on a
linear CSTR model is used with (a) the actual nonlinear CSTR (dashed line), and (b) the CSTR’s
hypothetical linearized model (solid line).  The actual closed-loop response is clearly
problematic, even though the ideal linear response is good.
- Could this closed-loop behavior have been predicted?
- Is it possible to design a linear controller that avoids such problems in a systematic way?
- Is it possible to make the closed-loop behavior of this CSTR almost linear using a linear

controller?

2.5 Motivating Example 5
Consider a CSTR with a van de Vusse type of reaction scheme, as discussed in Example 5.  Van
de Vusse reaction systems are well known to be “strongly nonlinear”.  For this CSTR, the
concentration of the product B in the effluent is the controlled variable, and the flow rate through
the reactor is the manipulated variable.  A linear IMC controller is designed using a linear model
around a given non-degenerate steady state.  Two different values for the IMC-filter parameter λ
are considered: 1λ =  and 10λ = .  Step changes in the setpoint are performed.  Figure 15 ( 1λ = )
and Figure 18 ( 10λ = ) show the discrepancies between (a) closed-loop responses of the actual
(nonlinear) CSTR output under the above linear IMC, and (b) closed-loop responses of the
output that would be obtained if the CSTR behaved exactly like the linear model employed by
the above linear IMC.  Figure 15 and Figure 18 clearly show that increasing the value of the time
constant λ of the linear IMC filter from 1 to 10 results in considerably increased peak
discrepancy between the outputs of the actual nonlinear and the ideal linear closed-loop.

However, similar experiments with the CSTRs of Example 1 and Example 4 show the
exact opposite behavior, namely increasing the value of the time constant λ of the linear IMC
filter results in considerably decreased peak discrepancy between the outputs of the actual
nonlinear closed-loop and the ideal linear closed-loop, as shown by comparing Figure 13 with
Figure 16 (Example 4) and Figure 14 with Figure 17 (Example 1).
- How could the above different closed-loop nonlinearity trends be rigorously explained?
- In general, should the time-constant λ of a linear IMC filter take large or small values?
- Within what limits should λ take values?
- How could the effect of linear IMC tuning on closed-loop nonlinearity be rigorously

predicted, so that linear IMC controllers for nonlinear systems can be synthesized?

3 Background

3.1 Nonlinear Operator Analysis
Basics of the input-output system framework can be found in Willems (1971), and Desoer and
Vidyasagar (1975).  Within this framework the magnitude of a signal [ ): 0, nx ∞ →ℜ  is
quantified through its p-norm ( 1p ≥ ), defined as

[ )
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0,

( ) if 1,
ˆ

( ) if sup

p

p

Sp

t

x t dt p
x

x t pess
⊂ℜ

∈ ∞

�
� ∈ ∞��= ��
� = ∞
��

(1)



6

where ( )x t  denotes any norm of the vector ( ) nx t ∈ℜ .  Signals with finite p-norms form a

(Banach) space n
pL , defined as

[ ){ }: 0, :ˆn n
p p

L x x= ∞ →ℜ < ∞ (2)

The dynamic behavior of a nonlinear system is described by an unbiased nonlinear
operator (mapping)

: : : 0 (0) 0N U Y u y Nu N→ = =� � (3)
which maps input signals u in the space U to output signals y in the space Y.  Note that there is
no unanimity in literature regarding uniqueness of y given u.  We will not assume uniqueness in
this work.

The operator N is commonly realized through a set of ordinary or partial differential
equations and algebraic equations, such as

( ) ( ( ), ( ))

( ) ( ( ), ( ))

dx t f x t u t
dt

y t h x t u t

=

=
(4)

The norm and incremental norm (gain and incremental gain or local Lipschitz constant)
of :N U Y→  over the set V U⊆  are defined (Nikolaou and Manousiouthakis, 1989) as

0

sup
V

u V
u

Nu
N

u∈
≠

= (5)

and

1 2
1 2

1 2

, 1 2

sup
V

u u V
u u

Nu Nu
N

u u∆
∈
≠

−
=

−
(6)

respectively, where the norm functions on the right-hand sides of eqns. (5) and (6) are defined on
the spaces U and Y.  The set V identifies these input signals that are physically important for the
operator N, e.g., mole fractions in [0,1] .  An operator :N U Y→  is bounded (stable) over the set
V when

VN
∆
< ∞ . (7)

Note that the above definition of stability supercedes the standard stability definition VN < ∞ ,

because V VN N
∆

≤ .  Note also that even for very simple nonlinear operators it is possible to

have 
1V

N
∆
= ∞  and 

2V
N

∆
< ∞  (or 

1V
N = ∞  and 

2V
N < ∞ ) for two different sets V1 and V2

(Nikolaou and Manousiouthakis, 1989).
The linearization of an operator :N U Y→  around the input trajectory u0 is defined as

the linear operator 
0

:uL U Y→  satisfying the equation

00 0

0

( )
lim 0u

u

N u u Nu L u
u→

+ − −
=

For an operator defined via eqn. (4), the linearization of N is a linear time-varying operator,
defined by the equations
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( ) ( )

( ) ( )

0 0 0 0

0 0 0 0
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h hy t x t u t x t x t u t u t
x u

∆ ∂ ∂= ∆ +
∂ ∂
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∂ ∂

(8)

where 0( )x t  is the solution of (4) corresponding to 0( )u t  and (0) 0x∆ = .
For a cascade of operators 1 2N N N=  the linearization of N around u0 can be shown to be

equal to the cascade of linearizations as
1 2

0 2 0 0

N NN
u N u uL L L= (9)

As a corollary, the linearization of the inverse of an operator is equal to the inverse of its
linearization as

( )1

0 0

1N N
Nu uL L
− −
= (10)

3.2 Nonlinearity Quantification
For a meaningful quantification of the nonlinearity measure of a nonlinear system, one must
explicitly state what is the intended purpose of such quantification.  The performance of a linear
feedback controller designed for a forced nonlinear system is the focus of this work.

In that context, efforts have appeared in literature to quantify the nonlinearity of an
operator by computing its distance from a suitably defined linear operator.

Desoer and Wang (1980) defined the nonlinearity measure of a nonlinear operator N as
infˆ
L

v N L
∈Λ

= − (11)

where the above minimization is performed over all linear operators L in the set Λ, and the norm
function can be any suitable norm.  Desoer and Wang (1980) were not concerned with the
computation of v, but rather with its definition.  However, if one uses an induced norm, such as,
eqn. (5), in eqn. (11), then the computation of v becomes extremely complicated.

To address computational issues in the computation of v as defined in the above eqn. (11)
Nikolaou (1993) constructed an inner product and corresponding norm theory for nonlinear
operators.  Based on that theory, v, corresponding to the average discrepancy between outputs of
N and L for inputs within an explicitly specified set, can be trivially computed via Monte Carlo
simulations.  In addition, explicit formulas for the optimal L in eqn. (11) can be derived.  Using
this theory, Nikolaou and Hanagandi (1998) quantified the nonlinearity of several chemical
engineering systems, and showed that polynomial nonlinearities, usually thought of as mild, may
be severe, and exponential nonlinearities, usually thought to be severe, may be mild, according to
both the system at hand and how far from a steady state the system operates.  The same authors
also showed how the nonlinearity of a system may vary from mild to severe according to the
magnitude of the system’s inputs, demonstrated quantitatively how a feedback loop may exhibit
much lower nonlinearity than an open-loop nonlinear system, and showed how different tunings
of a linear IMC controller used to control a nonlinear process may result in closed loops of
significantly different nonlinearity magnitudes.

While computationally efficient for the analysis of open- or closed-loop systems, the
approach introduced by Nikolaou (1993) has the shortcoming that the norm employed in eqn.
(11) is not an induced norm, therefore it does not satisfy the submultiplicativity property
( 1 2 1 2N N N N≤ ), thus making it difficult to use in direct feedback controller synthesis.
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Allgöwer (1995) tackled the problem of using an induced norm (eqn. (5)) with eqn. (11),
by parametrizing the input signal u in eqn. (5) and the linear operator L in eqn. (11) though
finite-dimensional approximations and directly performing the optimization

0

inf sup
L u V

u

Nu Lu
v

u∈Λ ∈
≠

−
= (12)

For a number of examples, he found that the value of v is insensitive to the particular
parametrization of u.  The nonlinearity measure computed via Eqn. (12) corresponds to the worst
possible discrepancy between outputs of N and L.

Helbig et al. (2000) defined a nonlinearity measure as

,0 ,0

,0 ,0

,0 ,0

,0

[ , ] [ , ]
inf sup inf

[ , ]L L

N N

N L

L x Xu U Nx X

N u x L u x
N u x

φ
∈Λ ∈∈

∈

−
= (13)

This measure focuses on the discrepancy of output of N and L as a function of both initial
conditions and inputs.  It takes values between 0 and 1, thus allowing easy nonlinearity
assessment for a value of φ.  Computing φ is practically infeasible.  However, Helbig et al.
(2000) have shown how to efficiently calculate good approximations or bounds of φ by finite-
dimensional parametrization of u and convex optimization.

To avoid having to directly optimize with respect to L in nonlinearity measures such as in
eqns. (11) and (13), Sun and Kosanovich (1998) proposed to quantify nonlinearity as

{ }max sup ,supupper lower
u U u U

Nu L u Nu L u
∈ ∈

− − (14)

where Lupper and Llower are linear operators such that they provide the smallest bounding envelop
on the output of N as ( ) ( ) ( )( ) ( ) ( )lower upperL u t Nu t L u t≤ ≤  for u U∈ .  This approach has many
similarities to identification for robust control proposed by Helmicki et al. (1991, 1992).

In all of the above approaches the focus is on assessing the nonlinearity of a given
system, whether that would be the controlled process in open loop or the entire closed loop
involving a nonlinear process and a linear controller.  In an effort to better assess the need for
nonlinear control, as opposed to just assessing the distance of nonlinear plant from a linear one,
Stack and Doyle (1997) proposed to focus on the nonlinearity magnitude of an optimal nonlinear
controller designed for a nonlinear process.  Quantification of the nonlinearity of that controller,
using any method, was proposed by these authors as a measure of the need for nonlinear control,
the assumption being that a highly nonlinear controller would result in a highly nonlinear closed
loop, hence rendering linear control inadequate and necessitating nonlinear control.  For static
state feedback laws, these authors proposed to use coherence analysis (Bendat, 1993) as the
nonlinearity measure.  However, the optimal nonlinear control structure proposed was based on
determination of an open-loop optimal input profile over a horizon, whereas a feedback control
law would require the dependence of the value of the process input as a function of state
measurement at the first time point of a moving horizon.  It might also be argued that if the
optimal nonlinear control structure for a given process were known, then that structure, rather
than a linear one, might actually be used.

Stack and Doyle (1999) also applied coherence analysis to the assessment of closed-loop
nonlinearity for a nonlinear system controlled by linear IMC.  Emphasis was placed on the effect
of different IMC tunings on closed-loop nonlinearity.  An advantage of coherence analysis is that
its entailed computational load is trivial, and the analysis may be conducted using experimental
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data, without detailed knowledge of a process model.  This may be of great practical
significance.

Departing from the notion of nonlinearity measures based on the distance of a nonlinear
operator from a suitable linear operator, Guay et al. (1995) proposed to quantify the static
nonlinearity of a system described by eqn. (4) in terms of the local geometry of the steady-state
locus, i.e., by considering the first and second derivatives of the steady-state map 0 ( , )s sf x u=
with respect to us.  Guay (1996) extended these results to quantification of dynamic nonlinearity.

The premise of the above approaches is that if a nonlinear process is “close” to a linear
one, then a linear controller will be sufficient and vice versa.  While that may frequently be true,
proximity of a nonlinear process to a linear one is neither necessary nor sufficient for good
closed-loop performance.  For example, Nikolaou and Hanagandi (1998) have shown that a
highly nonlinear process controlled by linear IMC may result in an almost linear closed loop, if
IMC is suitably designed.  Conversely, Schrama (1992) has shown that, even for a linear process,
a controller design based on a linear model with close proximity to a process may even result in
closed-loop instability.  Nevertheless, one would intuitively expect that there must be controller-
dependent connections between open- and closed-loop nonlinearity.  That intuition is indeed
correct, as shown in the following section.

4 Results

4.1 Basic Lemmas and Definitions
In this subsection we prove basic lemmas that we will use to prove the main results of the
following subsections.

Lemma 1 – Invertibility and boundedness (stability) of a nonlinear operator T over a set

Consider the nonlinear operator :T U X→ , where U , the domain set, and ( )X T U= , the
image set, are subsets of normed spaces.  Then the following two statements are equivalent:
1. There exists a constant 0c >  such that

1 2 1 2Tu Tu c u u− ≥ −   1 2,u u U∀ ∈ (15)

2. The inverse of T, 1 :T X U− → , exists on X, and T is bounded (stable) over the set X with
1 1

X
T

c
−

∆
≤ < ∞  (16)

Proof:  See Appendix A.

Remark 1 – Scope of Lemma 1
Note that Tu need not be uniquely defined!  Output multiplicities (the same input is mapped to
more than one output) are allowed for the operator T.

Lemma 2 – Existence and boundedness (stability) of the operator 1( )I R −+  over a set

Consider the nonlinear operator ( ) :I R U Y+ → , where I is the identity operator, U  is the
domain set, and ( )( )Y I R U= +  is the image set, and both U, and Y are subsets of normed
spaces.  Let

1UR
∆
< (17)
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for an incremental norm over U.  Then the inverse of I R+ , 1( ) :I R Y U−+ → , exists on Y and
is bounded as

1 1( )
1Y

U

I R
R

−

∆
∆

+ ≤
−

(18)

Proof: See Appendix B.

Remark 2 – Importance of Lemma 2
1. Results similar to Lemma 2 are well known in mathematical systems literature (e.g.,

Willems, 1971) as variants of Banach’s contraction mapping theorem (Saaty and Bram,
1964, p. 37;  Saaty, 1967, p. 34;  Shinbroth, 1966).  However, there is a small but crucial
difference between Lemma 2 and standard literature results:  Lemma 2 is proven for the sets
U and Y not being entire Banach spaces.  This is extremely important when dealing with
feedback control systems, because the behavior of such systems may vary drastically when
different sets of inputs are considered, as shown in the sequel.

2. Note also that, unlike the case where R is linear, eqn. (17) in Lemma 2 is a sufficient but not
necessary condition for the invertibility of I R+ .

Lemma 3 – Closed-loop operator for nonlinear internal model control (IMC) structure
Consider the IMC loop of Figure 1.  The operator N corresponding to the plant is nonlinear, the
operator L corresponds to the plant model, and the operator Q is the Youla parameter of the
controller.  Assume that the closed-loop is well posed, i.e. 1( )I NQ LQ −+ −  exists.  Then

1( ) ( )y d NQ I NQ LQ r w d−= + + − − − (19)
Proof:  See Appendix C.

Corollary 1 – Closed-loop operator for nonlinear IMC regulator and servo problems
When there is no setpoint change and no noise in Figure 1 ( 0r w= = ), eqn. (19) becomes

1( )( ) ( ) ( )ˆ dyy I LQ I NQ LQ d N d−= − − + − − = − − . (20)
When there is no external disturbance in Figure 1 ( 0d = ), eqn. (19) becomes

1( ) ( ) ( )ˆ ryy NQ I NQ LQ r w N r w−= + − − = − . (21)
Proof:  Straightforward.  See Appendix D.

Remark 3 – Subtleties in calculations with nonlinear operators

1. Note that, in general, ( )dy dyN d N d− − ≠  in eqn. (20) because the operator Ndy is nonlinear.
Note also that for nonlinear operators A, B, C left-distributivity holds, i.e.
( )A B C AC BC+ = +  but right-distributivity does not, i.e., in general, ( )C A B CA CB+ ≠ +
(Willems, 1971, p. 16).  Therefore ( )NQ LQ N L Q− = − , regardless of linearity of N, L, or
Q.

2. Note that no linearity assumptions have been made yet about L and Q in the above results.

4.2 Control-relevant quantification of closed-loop nonlinearity

If a linear IMC controller with linear Youla parameter Q based on the stable linear model L is
used to control the stable linear plant L, it is well known that the closed loop is stable if and only
if the controller Q is stable (Morari and Zafiriou, 1989).  However, if that linear controller is
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used to control the nonlinear plant N, then the actual closed loop will differ from the nominal
(linear) closed loop, and actual performance will be inferior, to a degree that may vary from
negligible to severe.  It is, therefore, natural to ask the following questions:

(a) What is the effect of the nonlinearity of the plant N on closed-loop nonlinearity?
(b) What is the effect of the design of the controller Youla parameter Q on closed-loop

nonlinearity?
We provide answers to the above questions next.

If the actual plant were stable, linear, and equal to L, then the hypothetical closed-loop
operator for the IMC configuration of would produce a plant output 'y  such that

' ( ) ( ) ( )y I LQ d LQ r w d LQ r w d= − + − = + − − (22)
Eqns. (22) and (19) imply that

( ) 1' ( )

( )ˆ

y y NQ I NQ LQ LQ r w d

N r w d

−�− = + − − − − =
�

= ∆ − −
(23)

where the operator
( ) 1ˆN NQ I NQ LQ LQ−∆ = + − − (24)

refers to the discrepancy between the nonlinear and hypothetical linear closed loop.  To quantify
that discrepancy we propose to use the concept of the incremental norm over a set (local
Lipschitz constant) as follows.

Definition 1 – Control-relevant quantification of closed-loop nonlinearity
Let the linear operator W correspond to a stable linear low-pass filter, and let the linear model L
and Youla parameter Q of the controller (Figure 1) be linear.  Then the nonlinearity of the closed
loop in Figure 1 over the set Z is quantified as

( )1( )ˆZ Z
W N W NQ I NQ LQ LQ−

∆ ∆
∆ = + − − (25)

Remark 4 – Why incremental norms over sets for quantification of nonlinearity?

Definition 1 departs markedly from nonlinearity quantifiers that have appeared in literature,
which rely on the norm (instead of the incremental norm) of the difference between a nonlinear
operator and a suitable linear operator.  There are two reasons for introducing Definition 1:

(a.) The incremental norm ZW N
∆

∆  over the set Z captures nonlinearity better than the

standard norm ZW N∆  over the set Z.  Indeed, by definition, ZW N
∆

∆  is the least upper
bound of the gain experienced by an input signal (in deviation form with respect to its
steady state value) when going through the unbiased operator W N∆ .  However, the closed
loop may operate far from its original steady state (e.g., it may operate around new steady
states, or it may be in long transient, responding to ever changing setpoints or large
disturbances).  It is clear that incremental changes of the output of W N∆  corresponding to
incremental changes of the input to W N∆  are far more relevant to quantifying the
nonlinearity of the closed loop.
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(b.) As will be shown below, computations with incremental norms are a lot easier than
computations with norms.  In addition, powerful closed-loop stability, performance, and
robustness results may be obtained using incremental norms, as shown in the sequel.

Lemma 4 – Representation of N∆  as a cascade of operators

The operator N∆  defined in eqn. (24) with L, Q being linear, satisfies the equality
1( )( )( )N I LQ NQ LQ I NQ LQ −∆ = − − + − . (26)

Proof:  See Appendix E.

Remark 5 – Generalization of Lemma 4
Note that Lemma 4 is also true under the weaker assumption that the composition LQ of the
operators L and Q is linear, rather than each of L and Q being linear.

When the plant N and its linear model L have stable inverses, then the above Definition 1
can be extended in an important way that provides additional insight to the above quantification
of closed-loop nonlinearity.  To realize this, consider a nonlinear plant N, such that 1N −  and 1L−
exist and are stable.  For this plant, consider the following two model-based feedback controllers
and corresponding closed loops:

a. A linear IMC controller with linear model L and linear Youla parameter
1

L LQ L F LQ F−= ⇔ =  (Figure 1), where the filter F is linear. Then, by Lemma 3 we
obtain that the plant output for the closed loop is

1 1 1( ) ( )LinearControly d NL F I NL F F r w d− − −= + + − − − (27)
i.e. use of linear control makes the closed-loop operator ( , , ) LinearControlr w d y�  nonlinear.

b. An optimal nonlinear IMC controller with nonlinear model N (in place of L in Figure 1)
and nonlinear Youla parameter 1

N NQ N F NQ F−= ⇔ = , where the filter F is the same as
in QL.  Then, by Lemma 3 we obtain that the plant output for the closed loop is

( )NonlinearControly d F r w d= + − − (28)
i.e. use of nonlinear control makes the closed-loop operator ( , , ) NonlinearControlr w d y�

linear.
The discrepancy between the closed-loop plant outputs yL and yN, corresponding to linear and
nonlinear IMC, respectively, is

( ) 11 1 ( )LinearControl NonlinearControly y NL F I NL F F F r w d
−− −�− = + − − − −��

(29)

The magnitude of the above operator

( ) 11 1ˆM NL F I NL F F F
−− −∆ = + − −  (30)

can be used in conjunction with Definition 1 to extend Definition 1 in the following important
way.

Definition 2 – Comparing a closed loop with linear control to a closed loop with optimal
nonlinear control for plants with stable inverses
Let the linear operator W correspond to a stable linear low-pass filter, and let the plant N and
linear model L in Figure 1 as well as 1N −  and 1L−  be stable.  Then the nonlinearity of the closed
loop in Figure 1 over the set Z can be quantified by
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( )( )11 1
Z

Z
W M W NL F I NL F F F

−− −
∆

∆
∆ = + − − (31)

Lemma 5 – Representation of M∆  as a cascade of operators
Under the assumptions of Definition 2, we have that

( ) 11 1( )( ) ( )M I F N L L F I N L L F
−− −∆ = − − + − . (32)

Proof:  See Appendix F.

Lemma 6 – Nonlinearity measures in Definition 1 and Definition 2 are equal for stable 1N − ,
1L−

When 1L−  is stable, then the optimal choice 1Q L F−=  for Q in Lemma 4 yields
N M∆ = ∆ . (33)

Proof:  Obvious, by substituting 1Q L F−=  into eqn. (26).

Remark 6 – Importance of Lemma 6
The above Lemma 6 implies that when the plant and its model have stable inverses, the nonlinear
closed loop with nonlinear plant and linear IMC (Figure 1) has the same distance from the
following two ideal closed loops:  (a) A linear IMC loop with linear plant and controller, and (b)
A nonlinear IMC loop with nonlinear plant and controller.  Note that these two closed loops are
different.

4.3 Main Result:  How Close to a Linear Closed Loop can the Nonlinear Closed
Loop be Designed?

Definition 1 requires that the operator I NQ LQ+ −  be invertible and 1( )I NQ LQ −+ −  be stable
over corresponding sets.  In addition, the direct effect of the Youla parameter Q on closed-loop
nonlinearity should be easy to assess for controller synthesis.  The following theorem resolves
both of these issues.

Theorem 1 – Upper and lower bounds on control-relevant nonlinearity of a stabilized
closed-loop
Let the operators N, L, Q, and W represent a nonlinear plant, linear model, linear Youla
parameter (Figure 1), and linear low-pass filter, respectively.  Consider a set E and let the set Z
be defined as

( )( )ˆZ I NQ LQ E= + − (34)
Let

( ) 1ˆ EN L Q
∆

γ = − < (35)
Then
1. The operator I NQ LQ+ −  is invertible over the set Z.
2. The operator 1( )I NQ LQ −+ −  is stable over the set Z.
3. The control-relevant nonlinearity of the closed loop is bounded as

min max

( )( ) ( )( )
ˆ ˆ

( ) 1 ( )
E E

Z
E E

W I LQ N L Q W I LQ N L Q
v W N v

I N L Q N L Q
∆ ∆

∆
∆ ∆

− − − −
= ≤ ∆ ≤ =

+ − − −
(36)

Proof:  See Appendix G.
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Corollary 2 – Weaker variant of Theorem 1
Under the assumptions of Theorem 1 we have

min max

( )( ) ( )
( )ˆ ˆ

1 ( ) 1 ( )
E E

Z
E E

W I LQ N L Q N L Q
W N W I LQ

N L Q N L Q
∆ ∆

∆
∆ ∆

− − −
η = ≤ ∆ ≤ − = η

+ − − −
(37)

Proof:  See Appendix H.

Remark 7 – Significance of Theorem 1
1. In addition to establishing lower and upper bounds of the control-relevant closed-loop

nonlinearity quantifier of Definition 1, Theorem 1 also provides a sufficient condition, eqn.
(35), for robust stability (over corresponding input sets) of a nonlinear closed-loop involving
a nonlinear plant and a linear controller.  In fact, the closed loop may turn from stable to
unstable when external inputs increase beyond a certain point, thus violating eqn. (35), as
subsequent simulation examples in section 5 clearly demonstrate.  Eqn. (35) is certainly a
sufficient condition.  However, the examples of section 5 indicate that it is not necessarily
conservative.

2. Eqns. (36) and (37) make it clear that, for a given low-pass filter W, the nonlinearity of the
closed loop depends on

a. the nonlinearity of the controlled plant (difference between N and L),
b. the linear model L,
c. the linear controller Q, and
d. the set E and, consequently, Z.

It is obvious that, when the plant is linear, i.e. N L= , then the nonlinearity of the closed loop
is trivially equal to zero.

When the plant is nonlinear, i.e. N L≠ , it is clear that different choices of Q, i.e.
different controllers, will result in closed-loop nonlinearities with different bounds in eqns.
(36) and (37).  The upper bound in eqn. (37) provides additional insight:  It is the product of
two terms, namely

( )ˆ W I LQα = − (38)
and

( )
ˆ ˆ

1 ( ) 1
E

E

N L Q
N L Q

∆

∆

− γβ = =
− − − γ

(39)

For a given low-pass filter W, the first term, ( )W I LQ− , is the norm of the weighted
sensitivity function of the ideal linear closed loop.  It depends only on L and Q, i.e. on the
linear feedback controller designed for the nonlinear process.  It is evident that linear
controller design that employs a linear process model L and selects Q by making

( )W I LQ−  small will also tend to make the nonlinearity of the closed-loop small.

The second term, ( )
1 ( )

E

E

N L Q
N L Q

∆

∆

−
− − , depends on both the feedback controller and the open-loop

nonlinearity, N L− , of the process.  This term provides a direct link between open-loop
nonlinearity and linear controller design.

3. Let us further elaborate on the previous Remark 7-2:  Assume, as before, that W is a low-pass
filter, and that L, in addition to being stable, also has a stable inverse.  Then the standard IMC
design for Q is 1Q L F−=  where the filter F typically corresponds to a transfer function
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1( )
( 1)F rG s

s
=
λ +

(40)

although more sophisticated filters may be considered.  If the choice of Q were not required
to satisfy inequality (35), then the term ( )W I LQ−  in the right-hand side of eqn. (37) could
be made arbitrarily small by making the time constant λ of the filter GF in eqn. (40)
arbitrarily small, because

( 1) 1
( 1)0 0 0

lim ( ) lim ( ) limsup ( ) 0
r

r
j

j
W I LQ W I F W j λ ω+ −

λ ω+λ→ λ→ λ→ ω
− = − = ω = . (41)

This would make closed-loop nonlinearity arbitrarily small.  However, the presence of
inequality (35) poses constraints on how small λ can be made, and consequently, closed-loop
nonlinearity may not be made arbitrarily small.  The effect of Q on closed-loop nonlinearity
will be made clear after the computation of incremental norms over sets has been discussed
in the next section.

Note also that if 1L−  is not stable, then ( )W I LQ−  cannot be made arbitrarily small,
even if Q is not required to satisfy inequality (35).  This limitation of systems with unstable
inverses is in addition to well-known bandwidth and inverse-response limitations of such
systems (Skogestad and Postlethwaite, 1996).

4. It is instructional to continue the analysis of the above Remark 7-2 under the additional
assumptions that 1N −  and 1L−  are stable.  In that case, Lemma 5 and Lemma 6 imply that
closed-loop nonlinearity, defined through either Definition 1 or Definition 2, is bounded as

1

1

1
( )

1
( )

( )
1

L F E
Z Z

L F E

N L L F
W N W M W I F

N L L F
−

−

−
∆

∆ ∆ −
∆

−
∆ = ∆ ≤ −

− −
. (42)

If induced 2-norms and incremental norms are used in the above eqn. (42), then eqn. (42)
implies that there always exists a filter F as in eqn. (40) that makes

1 ( )

1 ( )

(0)

1
(0)

L F E

L

L F E

L

N L

G
N LZ Z

G

W N W M
−∆

−∆

−

−∆ ∆
−

∆ = ∆ ≤ (43)

as long as
1 ( ) 1

(0)
L F E

L

N L

G
−∆

−
< (44)

The great importance of eqn. (43) subject to eqn. (44) is that it provides a direct link between
open-loop and closed-loop nonlinearity.  In particular, it indicates that if “open-loop”

nonlinearity is “small” i.e. 1 ( )

(0) 1L F E

L

N L

G

−∆−
< �ξ , then closed-loop nonlinearity is also going to

be small, i.e. 1ZW N ξ
ξ ξ−∆

∆ ≤ ≈ .  Note that the magnitude of the open-loop nonlinearity is to

be computed over the set 1 ( )L F E− , which is partly determined by the IMC filter F.
However, the steady-state gain of F is 1, and, consequently, the choice of F is going to be
irrelevant if the approximation scheme of Corollary 3, below, is used for the computation of

1 ( )L F E
N L −∆
− .

5. The low-pass filter W, acting on ∆N, can be thought of as a filter acting on the difference
between the outputs of the nonlinear closed-loop and the ideal linear closed-loop.  Using W,
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one can do a form of frequency analysis and design for the nonlinear closed loop, as follows:
Assume that an upper bound on the frequency content, Ω, of setpoint changes or output
disturbances is roughly known.  Select a filter W that has amplitude ratio approximately 1 for
frequencies in Ω=and approximately zero for higher frequencies.  Then, a linear controller can
be designed that makes the (high-pass) sensitivity function 1 ( ) ( )L QG j G j− ω ω  of the ideal
linear closed loop “almost 0” (and the (low-pass) complementary sensitivity function

( ) ( )L QG j G jω ω  of the ideal linear closed loop “almost 1”) over frequencies in Ω.  This

results in ( ) 0W I LQ− ≈  0W N∆ ≈ , by eqn. (37).  Therefore, there can be a guarantee
that the outputs of the nonlinear loop and of the ideal linear loop will be almost identical over
Ω.  This is illustrated in Example 7.  Note that the preceding result does not guarantee
anything about the behavior of the nonlinear closed-loop output in the frequency range
outside Ω.  In fact, intermodulation distortion is a well known phenomenon in which
frequencies not included in the input may appear in a system’s output.  On the other hand,
passivity results in the frequency domain may be established.  Therefore, the implications of
the preceding discussion need to be further investigated.

6. A direct counterpart of eqn. (35) is well known in linear robust control theory (e.g., Morari
and Zafiriou, 1989, pp. 33, 66) in the form of the inequality

( )
,

sup 1j j j
ω

ω ω ω� <�
P

P( )-P( ) Q( )
�

� , (45)

which is necessary and sufficient for robust closed-loop stabilization of the stable linear plant
sP( ) by a linear IMC controller with linear model sP( )� .  The magnitude of external inputs is

not an issue for the linear case.
7. Theorem 1 is a form of a small-gain theorem, the small-gain condition being eqn. (35).  It is

interesting to contrast Theorem 1 to well-known Small-Gain Theorems for standard (as
opposed to model-based) nonlinear feedback loops with nonlinear operators N and C for the
plant and classical feedback controller, respectively.  The standard Small-Gain Theorem
asserts that the closed loop is finite-gain stable, if 1

i
NC <  (Desoer and Vidyasagar, 1975,

p. 41).  The condition 1
i

NC <  is prohibitively conservative for practical use.  To support

that claim, one need only consider the induced 2-norm 2

22
0

supˆ PCx
xi

x
PC

≠
= , with P and C being

single-input-single-output (SISO) linear operators, corresponding to the transfer functions
GP(s) and GC(s) in the Laplace domain.  In that case, 

2
sup ( ) ( )P Ci

PC G j G j
ω

= ω ω , and the

standard Small-Gain Theorem implies that closed-loop stability would be guaranteed if
sup ( ) ( ) 1P CG j G j
ω

ω ω < . (46)

This inequality, however, may be violated by important classes of stabilizing controllers,
such as controllers with integral action (e.g., PID controllers), for which
sup ( ) ( )P CG j G j
ω

ω ω = ∞ .  In fact, it is well known that a non-conservative form of eqn. (46)

is the familiar Nyquist stability criterion ( ) ( ) 1P co C coG j G jω ω < , where ωco is the crossover
frequency. On the other hand, eqn. (35) in Theorem 1 does encompass PID controllers
(Morari and Zafiriou, 1989, p. 67).

8. Theorem 1 makes explicit use of the sets E (which contains the signal ε  in Figure 1, e.g., as
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max{ || || }pE = ≤ε ε ε ) (47)

(1 p≤ ≤ ∞ ) and { }( )ˆZ z z I NQ LQ ε= = + −  (which contains either setpoints or disturbances,
eqn. (34)).  Knowledge of the set E combined with eqn. (35) can be used to explicitly
characterize a superset of the set Z as

( ){ }max max|| || 1 ( ) 2ˆ E
Z z z N L Q ε ε

∆
⊆ Ξ = ≤ + − ≤ . (48)

The meaning of the above inequality (48) is that Theorem 1 cannot be guaranteed to be valid
for setpoints or disturbances with norms larger than ( ) max max1 ( ) 2

E
N L Q

∆
+ − ≤ε ε .  While

eqn. (48) does provide an exact characterization of the set Z, we demonstrate through a
number of examples in the sequel that eqn. (48) is not necessarily conservative.  In fact, we
have found that it is frequently very accurate.

9. Note that Theorem 1 is also true under the weaker assumption that the composition LQ of the
operators L and Q is linear, rather than each of L and Q being linear.  This result could be
used in robust nonlinear controller design.  For example, if a nonlinear plant model N�  is
used in place of L, with 1N −�  stable, then the standard nonlinear controller design

1Q N F NQ F−= ⇔ =� �  with a linear filter F can be used, and Theorem 1 can be used to
design F for robust stability and performance.  In that case, eqn. (36) places bounds on the
distance between the nominal and the actual closed-loop operators.

4.4 Insight Provided by and Computation of Incremental Norms over Sets
The bounds placed on closed-loop nonlinearity by Theorem 1 or Corollary 2 through eqns. (36)
and (37) are functions of the incremental norms ( )( ) EW I LQ N L Q

∆
− − , ( ) EI N L Q

∆
+ − , and

( ) EN L Q
∆

− .  In addition, these bounds rely on satisfaction of the inequality ( ) 1EN L Q
∆

− <
in eqn. (35).  Therefore, to use Theorem 1 or Corollary 2 for controller analysis and, more
importantly, design, it is clear that one must be able to
a. Reliably compute the incremental norms ( )( ) EW I LQ N L Q

∆
− − , ( ) EI N L Q

∆
+ − , and

( ) EN L Q
∆

−  for a given filter W, nonlinear plant N, linear model L, and controller Q
(analysis).

b. Assess the effect of the controller Q on ( )( ) EW I LQ N L Q
∆

− − , ( ) EI N L Q
∆

+ − , and

( ) EN L Q
∆

−  for a given filter W, nonlinear plant N, and linear model L, in order to
synthesize a controller Q (synthesis).

The following theorem is crucial for both of the above tasks:

Theorem 2 – Computation of incremental norms over sets

Let :M V X→  be an unbiased nonlinear operator, and let 
0

:uL V X→  be its linearization
approximation around the trajectory 0u  (Willems, 1971), where the sets V and X are subsets of
Banach spaces (e.g., peL , [ ]1,p∈ ∞ ), and V is convex.  Then

0
1 2 0

1 2

1 2

, 1 2

sup sup uV
u u V u V

u u

Mu Mu
M L

u u∆
∈ ∈
≠

−
= =

−
(49)

Proof:  See Nikolaou and Manousiouthakis (1989).
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The above Theorem 2 indicates that for the computation of VM
∆

, direct optimization

that determines 1 2

1 2
1 2

1 2

,
sup Mu Mu

u u
u u V

u u

−
−

∈
≠

 can be replaced by much simpler optimization that finds 
0

0

sup u
u V

L
∈

,

because the operator 
0uL  is linear time-varying, hence explicit expressions exist for 

0uL  for
many norm functions (e.g., p-norms, 1,2,p = ∞ ).  Indeed, Nikolaou and Manousiouthakis (1989)
have demonstrated that finding 

0
0

sup u
u V

L
∈

 is feasible via nonsmooth optimal control, albeit

cumbersome.  The following heuristic approximation of eqn. (49), within the spirit of the above
tasks a and b, allows the computation of VM

∆
 via trivial computations.

Corollary 3 – Approximate computation of incremental norms over sets
Under the conditions of Theorem 2,

0
0

0

'

constant

sup uV
u V

u

M L
∆

∈
≈ (50)

where the operator 
0

'
uL  appearing in the right-hand side of the above eqn. (50) is the linearization

of M around steady states (constant) u0 in the set V

Remark 8 – Importance of Corollary 3

1. Because the operator 
0

'
uL  is linear time-invariant, well known explicit formulas exist for

0

'
uL  for many norm functions (e.g., p-norms, 1,2,p = ∞ ).  Therefore, 

0
0

0

'

constant

sup u
u V

u

L
∈

 can be

searched for efficiently.
2. Theorem 1 relies on inequality (35), which involves ( ) EN L Q

∆
− .  According to Theorem 2,

to compute ( ) EN L Q
∆

−  one need linearize ( )N L Q−  around trajectories iε  belonging to
the set E (see Figure 1 and Remark 7-8) and compute the supremum over all iε  that play the
role of u0 in the right-hand-side of eqn. (49).  Corollary 3 requires only constant values of iε
for the approximate computation of ( ) EN L Q

∆
−  according to eqn. (50).  Computation can

proceed as follows.
a. Consider a steady state (constant) value iε  in the set max{ || || }E ε ε ε= ≤ .
b. Find the corresponding steady state value ui of iQε .  That value is well defined because

Q is designed to be a globally stable linear time-invariant operator.
c. Find 

iuL , the linearization of the nonlinear operator N around the steady state ui of part b.
d. Consider the operator ( )

iuL L Q−  in place of the linearization of ( )N L Q−  around iε .

e. Compute ( )
iuL L Q− , where the norm function denotes the induced norm of the operator

( )
iuL L Q−  corresponding to the norm ( ) EN L Q

∆
− .  For example, one can use the
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induced 2-norm (H-infinity norm of the corresponding transfer function ( ) ( )
uiL L QG jω− )

i.e.

( )2
( ) sup ( ) ( ) ( )

i uiu L L Qi
L L Q G j G j G j

ω
ω ω ω− = − (51)

or the induced ∞-norm, i.e.

1
0

( ) ( )
iu i

L L Q h h t dt
∞

∞
− = = < ∞ (52)

where ( )h t  is the impulse response of ( )
iuL L Q−  (Desoer and Vidyasagar, 1975).

f. Repeat the above steps a through e for increasing values of iε .
3. The above procedure for computation of incremental norms can obviously be applied to the

computation of ( )( ) EW I LQ N L Q
∆

− −  and ( ) EI N L Q
∆

+ −  that appear in eqn. (36).
4. Whether the induced 2-norm (eqn. (51)), induced ∞-norm (eqn. (52)) or any other induced

norm that is easy to compute through eqn. (50) should be used in Theorem 1 depends on the
closed-loop performance criterion.  For example, if the root-mean-square (RMS) error is
important, the 2-norm should be used.  If maximum errors are important, then the ∞-norm
should be used.  This will be demonstrated in the Examples section.

5. Of particular importance is the use of the 2-norm with Theorem 1 and Corollary 3 in
synthesizing a stabilizing controller Q.  Let invQ L F=  be a candidate controller where Linv is a
stable approximation of 1L−  (Morari and Zafiriou, 1989, Chapter 4).  Combining eqn. (35)
with eqns. (50) and (51), we get that Q is stabilizing over the set E if

( )sup ( ) ( ) ( ) ( ) 1
u inviL L L FG j G j G j G j− <

ω
ω ω ω ω (53)

for all ui defined in Remark 8-2b.  Thus, one can design a linear feedback controller that
stabilizes the nonlinear closed loop by designing a linear Q through selection of a time

constant λ for the filter 1( )
( 1)F rG s

s
=

+λ
 such that eqn. (53) is satisfied.  A Bode plot can

provide a particularly simple and intuitive graphical aid for the selection of λ through
satisfaction of eqn. (53), by rewriting eqn. (53) as

( ) 2 2 / 2
1 1( ) ( ) ( )
( ) ( 1)u inviL L L r

F

G j G j G j
G j

ω − ω ω < =
ω λ ω +

   for all ω (54)

for all ui defined in Remark 8-2b, and requiring that the Bode plot of the right-hand side of
eqn. (54) does not intersect the family of Bode plots of the left-hand side.  This will be shown
in section 5.

6. When the operator M in eqn. (50) is one of the operators ( )N L Q− , ( )( )W I LQ N L Q− −  or
( )I N L Q+ − , which appear in Theorem 1, then the operator N (plant) must be linearized

around several steady states.  This can be done either by linearizing a nonlinear model of the
controlled plant around desired steady states, or by developing multiple linear models from
experimental data, each model being valid around a steady state of interest.  Given that the
development of multiple linear models around various steady states is not uncommon in
industry, Corollary 3 substantially enhances that practice by indicating how to use such
models for rigorous and computationally efficient analysis and synthesis of model-based
controllers for nonlinear processes.
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4.5 Recapitulating:  Linear Controller Design for Nonlinear Systems – When and
How

The preceding results can be organized in a well defined, computationally effective methodology
of linear controller design for open-loop stable nonlinear systems, as follows.
1. Obtain linear time-invariant dynamic process models around steady states of interest, for

disturbances and setpoints corresponding to the sets E and Z, as indicated by eqns. (47) and
(48) in Remark 7-8.  Such models may be obtained either by direct experimentation or by
linearization of an available nonlinear dynamic process model.

2. Use a linear process model L in a linear IMC controller parametrized in terms of the time-
constant λ in the filter F (eqn. (40)) of the Youla parameter Q (Figure 1).

3. Apply Corollary 3 (Remark 8-2) to select the smallest value λmin of λ that satisfies the
closed-loop stability condition, inequality (35) of Theorem 1, as discussed in eqns. (51) or
(52).

4. Apply Corollary 3 to compute incremental norms and subsequently compute closed-loop
nonlinearity bounds that appear in eqn. (36) of Theorem 1 or eqn. (37) of Corollary 2, for
various values of the IMC filter time-constant λ greater than the value λmin computed in the
above part 3.

5 Examples
In all examples that follow, single-input-single-output nonlinear models as in eqn. (4) are
available.  The variables u and y refer to each model’s input and output in deviation form.
Corollary 3 is used for the computation of all incremental norms.  Unless otherwise specified,

2p =  in all norms and incremental norms, and the low-pass weighting factor W is identity.

Example 1 – Closed-loop stability and instability over different operating ranges
Henson and Seborg (1990) studied the control of a system composed of two CSTRs in series.
The irreversible exothermic reaction A B→  occurs in the two reactors.  The system is modeled
by the nonlinear differential equations

( )1
1 0 1

1 1

expA
Af A A

dC q EC C k C
dt V RT

�
= − − −�

�
(55)

( ) ( ) ( )0 11 1
1 1

1 1 1

exp 1 expc pcA
f c cf

p p c c pc

CH k CdT q E hAT T q T T
dt V C RT C V q C

� �−∆ �
= − + − + − − −� �� ��� ��

ρ
ρ ρ ρ

(56)

( )2
1 2 0 2

2 2

expA
A A A

dC q EC C k C
dt V RT

�
= − − −�

�
(57)

( ) ( )

( )

0 22
1 2

2 2

2 1
1 2 1

2

exp

1 exp exp

A

p

c pc
c cf

p c c pc c c pc

H k CdT q ET T
dt V C RT

C hA hAq T T T T
C V q C q C

ρ

ρ
ρ ρ ρ

−∆ �
= − + −�

�

� �� �� � � �
+ − − − + − −� �� �� � � �� � � �� �� �

� �� �

. (58)

The concentration of the reactant at the exit of the second CSTR, CA2, is the controlled variable,
and the coolant flow rate qc (common for both reactors) is the manipulated variable.  Notation
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and parameter values are provided in Table 1.  Steady-state operation around the high-conversion
of the 3 possible steady states of this system is considered.  Linearization of the nonlinear model
around that steady state yields the linear model L (for deviation input and output variables) with

2

4 3 2

0.0003664 0.0513 0.1391( )
21.85 116.8 366.8 432.9L

s sG s
s s s s

+ +=
+ + + +

 (59)

This model is used for the design of an IMC controller as in Figure 1, with 1Q L F−=  where

( )2
1( )

1FG s
s

=
λ +

. (60)

Table 2 shows bounds of closed-loop nonlinearity according to Theorem 1 (eqn. (36) for the
upper bound and eqn. (37) for the lower bound) as well as values of ( )ˆ EN L Q

∆
γ = −  in eqn.

(35), for different values of λ in eqn. (60).  Rows of Table 2 correspond to increasing steady-
state values of ε, (eqn. (47)), i.e. increasing operating ranges of the system, as discussed in
Remark 7 and Remark 8.  Steady-state values of the process output, ys, and input, us,
corresponding to εs (i.e. ( )s s

u Q= ε  and ( )s s
y NQ= ε ) are also shown, to provide direct estimates

of operating ranges over which results are valid.
According to Table 2, when 1λ = , Theorem 1 guarantees closed-loop stability for

setpoint pulses of amplitude 34.2 10−+ ×  (ys column), because the corresponding 0.939 1γ = < .
This prediction is verified in Figure 4, which shows closed-loop responses of (a) the nonlinear
process (55)-(58) with the designed IMC controller ( 1λ = ) and (b) the linearized system, eqn.
(59), with the same IMC controller (perfect model assumption), for pulse setpoint change of
amplitude 34.2 10−+ ×  mol/L.

Theorem 1 does not guarantee closed-loop stability for setpoint pulses of amplitude
34.7 10−×  or larger (ys column), because the corresponding 1.3422 1γ = > .  This prediction is

verified in Figure 5, which shows responses of the same two closed-loop systems as in Figure 4,
for pulse setpoint change of amplitude 35.2 10−+ ×  mol/L.

Example 2 – Linear feedback may create a closed loop less nonlinear than the open loop
In addition to predicting operating regions of closed-loop stability or instability, Table 2 of
Example 1 can also be used to predict how closed-loop and open-loop nonlinearities compare
with each other.  For such a comparison to be meaningful, open-loop and closed-loop
nonlinearities must first be appropriately scaled, because open-loop nonlinearity refers to the
mapping :N u y→ , while closed-loop nonlinearity refers to the mapping :ryN r y→  (eqn. (21)
and Figure 1).  Therefore, for each nonlinear operator, we scale its incremental norm
(nonlinearity quantifier) by dividing it by the norm of a corresponding ideal linear operator, as
shown next.  Closed-loop nonlinearity is scaled as

( )
( )

( )

1( )
ˆZ Z

W NQ I NQ LQ LQW N
W I LQ W I LQ

−

∆ ∆
+ − −∆

=
− −

(61)

according to eqn. (25) in Definition 1.  Because, for this example, W I= , LQ F= , and 2-norms
are used throughout, we have that ( ) 1W I LQ− = , hence the values of minη  and vmax of Table 2
will not be altered as a result of scaling.  Open-loop nonlinearity is scaled as
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( )Q EN L
L

∆
−

. (62)

By Theorem 2 
0

0
( )

( )
sup uQ E

u Q E
N L L L

∆
∈

− = − , hence

0( ) uQ EN L L L
L L

∆
− −

≥ (63)

for a specific 1
0 ( ) ( )u Q E L F E−∈ = .

Let as consider as 0u  the steady-state input value 7.7793su =  that results in steady-state
output value 33.3 10sy −= + × .  Straightforward linearization of N around this steady state yields

0

2
'

4 3 2

0.0006 0.0495 0.1245( )
15.98 53.48 154.4 226.3uL

s sG s
s s s s

+ +=
+ + + +

(64)

Application to eqn. (63) yields that the open-loop nonlinearity has a lower bound as

( ) 2.8Q E
N L

L
∆

−
≥
�

.  (65)

On the other hand, Table 2 shows that for 33.3 10sy −= ×  the closed-loop nonlinearity has an
upper bound as max 1.906v =  for 1λ = .  Therefore,

( )
( )Q E Z

N L W N
L W I LQ

∆ ∆
− ∆

>
−

(66)

indicating that the closed loop is less nonlinear than the open loop.  This prediction is verified by
comparing Figure 2, which shows evident open-loop nonlinearity, to Figure 4, which shows
virtually no closed-loop nonlinearity for the even larger setpoint change 34.2 10−+ × .  It should be
stressed that the above prediction involved extremely simple computations.

Example 3 – Robustness of linear control for nonlinear process
The same system as in Example 1 is studied, with the addition of measurement delay of 5 time
units to the system (Figure 1).  The aim of this example is to apply inequality (54) and associated
graphical analysis for controller design, i.e. selection of values of λ such that

2 2

( ) ( ) 1 1
( ) ( ) 1

uiL L

L F

G j G j

G j G j

ω − ω
< =

ω ω λ ω +
   for all ω (67)

for all ui defined in Remark 8-2b.  Figure 6 shows 1
( )FG jω

 for various values of λ, and

( ) ( )

( )
uiL L

L

G j G j

G j

ω − ω

ω
 for different ui, both without delay in ( )

uiLG jω  (solid lines) and with delay

approximated by 5th-order Padé approximation (dashed lines).  Recall that the linear model L
does not include any measurement delay.  When 10λ =  and ( )

uiLG jω  includes the measurement
delay, Figure 6 shows that inequality (67) is satisfied.  Lower values of λ fail to satisfy eqn. (67).
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Therefore, IMC with 10λ =  guarantees robust stability of the closed loop in the presence of
measurement delay.

This prediction is verified in Figure 8, which shows the response of the nonlinear closed
loop with linear IMC and 10λ =  to a step change in the setpoint.  The response of the ideal
linear closed loop I F−  is also included in Figure 8.  In contrast, Figure 7 shows the response of
the nonlinear closed loop with linear IMC and 0.1λ = .  It is clear that the process output fails to
follow the setpoint.

Is this lack of robustness for 0.1λ =  due to the presence of measurement delay or to
process nonlinearity?  Figure 9, shows the response of a linear closed loop, with a linear process
L, measurement delay, and linear IMC employing a model L and filter F with 0.1λ = .  The
response is stable, as can be easily shown by computing the poles of the closed loop.  Therefore,
the poor response in Figure 7 is due to process nonlinearity.

Example 4 – CSTR with unstable inverse
The irreversible exothermic reaction A B→  occurs in a CSTR modeled as

( ) 0 expA
Ai A A

dC F EC C k C
dt V RT

�= − − −�
�

(68)

( ) ( )0 exp t
i A c

p

UAdT F ET T Jk C T T
dt V RT C Vρ

�= − + − − −�
�

(69)

The feed flow rate is the input and the CSTR temperature is the output.  Notation and steady-
state values are provided in Table 3.  For these values the CSTR has unstable inverse (unstable
zero dynamics in nonlinear geometric control terminology).  Note that the steady-state of Table 3
is the high-conversion steady-state of the three possible steady states of this CSTR.
Linearization of eqns. (68) and (69) around the steady state of Table 3 yields a linear model L
with transfer function

2

128.2 332.3 128.2( 2.5925)( )
14.96 45.03 ( 4.1775)( 10.7788)L

s sG s
s s s s
− + − −= =
+ + + +

. (70)

Note the right-half-plane zero. This model is used for the design of an IMC controller in the form
of invQ L F=  where

( )2

1
1

F
sλ

=
+

 (71)

and
( 4.1775)( 10.7788)

128.2( 2.5925)inv
s sL

s
+ +=
− − −

. (72)

Similarly to Table 2, Table 4 shows bounds of closed-loop nonlinearity according to Theorem 1
(eqn. (36) for the upper bound and eqn. (37) for the lower bound) as well as values of

( )ˆ EN L Q
∆

γ = −  in eqn. (35), for different values of λ in eqn. (71).
According to Table 4, the closed-loop stability condition 1γ <  (eqn. (35)) is violated for

12.75s ≈ε  corresponding to a process output value of 5.45sy ≈  and process input us

approximately 150% of the original steady-state value Fs.  Therefore, transition from stability to
instability would be expected for setpoint changes around the above output value. Figure 10
verifies this prediction:  For a setpoint step change of +5.5 (i.e. temperature setpoint of 547.6K)
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the output y initially attempts to reach that setpoint but eventually escapes to a steady state of
174.3− , i.e. temperature of 547.6 174.3 373.3− = K, almost equal to the feed temperature.  This

new steady state is the low-conversion steady state of the three possible steady states of this
CSTR.  This example clearly shows that the proposed analysis clearly determined the point of
departure from the linear response.

Table 4 also indicates that nonlinearity increases with increasing operating range, as

expected.  This is verified in Figure 11, which shows the scaled difference N Ly y
R
−  between the

response of the nonlinear closed loop, yN, and the ideal linear closed loop, yL, to setpoint changes,
R, of magnitudes 2.09 (solid line) and 5.39 (dashed line).  Both loops contain the same linear
IMC controller with 1λ = . If the closed loop were linear, two lines should coincide.

Example 5 – Van de Vusse CSTR
Chen et al. (1995) studied the nonlinearity of a CSTR in which the exothermic van de Vusse

reactions 
1 2k k

A B C→ →  and 
3k

A D→  take place.  The CSTR is modeled by the following
nonlinear equations.

( ) 2
0 1 3( ) ( )A

A A A A
R

dC V C C k T C k T C
dt V

= − − −
�

(73)

1 2( ) ( )B
B A B

R

dC V C k T C k T C
dt V

= − + −
�

(74)

( ) ( )

( )

2
0 1 2 3

1 ( ) ( ) ( )A RAB B RBC A RAD
R p

w R
K

p R

dT V T T k T C H k T C H k T C H
dt V C

k A T T
C V

ρ

ρ

= − − ∆ + ∆ + ∆

+ −

�

(75)

( )1 ( )K
K w R K

K pK

dT Q k A T T
dt m C

= + −� (76)

The flow rate 
R

V
V

�

 is the manipulated input and the concentration of the product B, CB, is the

controlled output.  Parameter values used by Chen et al. (1995) are given in Table 5.
The optimal steady-state yield of this CSTR with respect to the product B is attained at

the steady state shown in Table 5.  However, as Chen et al. (1995) point out, the steady-state gain
changes sign at that operating point.  Thus, linear controllers (with integral action) will not be
able to stabilize this reactor.  This fact is in agreement with Theorem 1.  Indeed, eqn. (35) cannot
possibly be satisfied, because there are always two infinitesimally differing inputs in the set E
that can generate finite outputs of the operator ( )N L Q− , making γ = ∞ .  Therefore, we will not
study operation of this CSTR at the optimal operating point any further.  Instead, we will study
linear control of this nonlinear system at the sub-optimal steady state shown in Table 5.  The
nonlinear system is linearized around this steady state. The linearized system L corresponds to
the transfer function (for variables in deviation form)
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3 2

4 3 2

1.073 2.597 0.8535 0.07328( )
3.386 3.417 1.315 0.1682L

s s sG s
s s s s
− − − −=
+ + + +

 (77)

This model is used for the design of an IMC controller with 1Q L F−=  where
1( )

1FG s
s

=
λ +

. (78)

Similarly to Table 2 and Table 4, Table 6 shows bounds of closed-loop nonlinearity according to
Theorem 1 (eqn. (36) for the upper bound and eqn. (37) for the lower bound) as well as values of
γ in eqn. (35), for different values of λ in eqn. (78).  Figure 12 shows the values of γ when ε
deviates from its steady-state value in the positive or negative direction.  It can be observed that
while γ exceeds 1, thus violating eqn. (35), when the magnitude of ε increases with 0ε >  (in the
direction where the optimal steady state can be reached), γ stays below 1 when the magnitude of
ε increases with 0ε <  (in the direction away from the optimal steady state).  Thus, the van de
Vusse CSTR is not severely nonlinear when steered away from the maximum conversion point.
This conclusion is in agreement with a similar conclusion arrived at by Helbig et al. (2000).

It is also computationally straightforward to show that when γ exceeds 1, there is a
bifurcation point, i.e. the steady-state gain matrix becomes singular.

Example 6 – Comparison of closed-loop nonlinearities of various closed loops
Comparison of Table 2, Table 4, and Table 6 reveals that the closed-loop nonlinearity bounds of
the van de Vusse CSTR in Example 5 are an order of magnitude less than the closed-loop
nonlinearity bounds in the reactors of Example 1 and Example 4.  Therefore, one would expect
lower closed-loop nonlinearity for the van de Vusse CSTR.  This is indeed the case.  Figure 13,

Figure 14, and Figure 15 show the scaled difference N Ly y
R
−  between the response of the

nonlinear closed loop, yN, and the ideal linear closed loop, yL, to setpoint changes, R, for each of
the three systems.  For each system, a pair of values of R were selected, corresponding to a pair
of values for γ that were approximately the same for all three reactors.  In this way, the stability
margin for all three systems was kept approximately the same, while closed-loop nonlinearity
was the main focus.

It is also interesting to observe the behavior of nonlinearity bounds as the value of the
IMC filter coefficient λ increases, i.e. the controller is tuned for faster closed-loop response.
While the bounds for the van de Vusse CSTR (Example 5) increased with increasing λ,
nonlinearity bounds in Example 1 and Example 4 decreased with increasing λ, predicting
corresponding trends in closed-loop nonlinearity.  This prediction is verified in Figure 16, Figure
17, and Figure 18, which are the counterparts of Figure 13, Figure 14, and Figure 15,
respectively, with higher values of λ.

In fact, in analogy to Table 2, Table 4, and Table 6 (for which 2p = ) Table 7, Table 8,
and Table 9 contain analogous closed-loop nonlinearity bounds for p = ∞ , thus correctly
predicting the behavior of the peaks Figure 16, Figure 17, and Figure 18.

The fact that closed-loop nonlinearity changes with the IMC filter time constant λ was
also observed by Stack and Doyle (1997).  However, these authors did not provide a means of
predicting in which direction the nonlinearity would change (increase or decrease).  The theory
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proposed in this work appears to provide such prediction, both qualitatively and quantitatively,
thus aiding in controller design.

Example 7 – Frequency content of nonlinear closed-loop output
The nonlinear dynamic system in Example 1 is studied again, to show the effect of a weighting
function W  on the bounds of 2EW N

∆
∆ .  Note that the operator W sees the difference between

the outputs of the nonlinear and the linear closed loops, N Ly y− .  Comparison between the

results tabulated in Table 10 (for which 1
10 1

W
s

=
+

) and the results of Table 2 (for which

W I= ) shows that the low frequency contents of yN  and yL do not differ. This is verified in
Figure 19.

6 Conclusions and Discussion
In this work, we developed a theory and an associated computational methodology that address a
basic question in controller design for nonlinear systems, namely “When and what linear control
is sufficient for a nonlinear system”.  The theory is applicable to an extremely wide class of
nonlinear processes.  The basic result of this theory is Theorem 1, which introduces the
important sets E and Z (to characterize the area of process operating conditions for which results
are valid) as well as the quantities γ, α, and 1ˆ γ

−γβ = .  Using these concepts, Theorem 1 places
bounds on an appropriately defined closed-loop nonlinearity measure.  These bounds depend
both on the nonlinearity of the controlled nonlinear process and on a linear controller
guaranteed to stabilize that process.  Computation of these bounds can be performed rigorously
using Theorem 2, and approximations can be efficiently computed using Corollary 3, as
described in section 4.5.  In addition to, and more importantly than its use as an analysis tool, the
proposed approach can be used as a synthesis tool that enables the designer to easily design
linear stabilizing controllers with predictable effects on closed-loop nonlinearity (hence
performance) for explicitly characterizable regions of process operation, without having to
assume process operation near a steady state (needed for linear behavior).  Process information
needed by the proposed approach is multiple linear time-invariant process models, each model
being valid around a steady state within a range of process operation.  Thus, the proposed theory
and associated computational methodology also create a firm basis and establish novel ways for
use of multiple linear models in linear controller design, an approach that has been repeatedly
proposed by several authors on the basis of intuitive arguments.  A number of examples in
section 5 illustrate the usefulness of the proposed approach.  In particular, predictions made by
the proposed theory for several nonlinear systems are reliably verified by representative
simulations.

It is clear that the proposed approach is only a first step towards understanding how
nonlinear process dynamics and linear feedback interact.  There are many potential extensions of
the theory as well as applications to specific classes of problems, a few of which are listed
below.

- Establish tighter bounds for Theorem 1, if possible.
- Evaluate the accuracy of the approximation suggested by Corollary 3 for the computation

of incremental norms over sets.  Particular properties of the nonlinear process to be
controlled, such as lack of resonance frequencies or passivity, may prove useful.
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Moreover, the kind and amount of modeling information that can reliably answer whether
linear control is sufficient for a nonlinear process is crucial from a practical viewpoint.
For example, could steady-state information (readily available by commercial simulators)
along with minimal information on process time constants be reliably used to determine
adequacy of linear control?

- Consider non-additive disturbances.
- Evaluate the effects of model uncertainty.
- Examine the effects of initial conditions.  Relevant work by Choi and Manousiouthakis

(2000) and Sontag (2001) (in particular small-gain type of theorems) may prove useful.
- Examine the implications for constrained MPC.  In particular, address the following

practically important questions:  “When and how can constrained MPC with linear
model adequately control a nonlinear process?”

- Illustrate the proposed approach for multivariable processes.
- Examine the applicability of the proposed approach to nonlinear distributed-parameter

processes.  It is in principle conceivable that discretization of corresponding nonlinear
partial differential equations can create nonlinear ordinary differential equations for
which the proposed approach can be applied.
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9 Appendices
Appendix A – Proof of Lemma 1

1. 2.
Let 1 2Tu Tu=  for two inputs u1 and u2 in U.  Then 1 2 1 20 0Tu Tu c u u= − ≥ − ≥

1 2u u=  which implies that the inverse of T, 1T − , exists.  Next, consider any two elements

1 2x x≠  in X.  Because 1T −  exists, there exist u1 and u2 in U, such that 1
1 1u T x−=  and 1

2 2u T x−= .

Therefore, by eqn. (15), 1 1 1 1
1 2 1 2( ) ( )T T x T T x c T x T x− − − −− ≥ −   1 1

1 2 1 2
1T x T x x x
c

− −− ≤ −

 
1 1

1 2

1 2

1T x T x

x x c

− −−

− ≤  for any two 1 2x x≠  in X.  Taking the supremum over X yields 1 1
X

T
c

−

∆
≤ < ∞ .

2. 1.
Combination of the definition of the incremental norm of 1T −  over the set X and eqn. (16) yields
that

1 1 1
1 2 1 2 1 2

1
X

T x T x T x x x x
c

− − −

∆
− ≤ − ≤ −

for any 1 2x x≠  in X.  Since x1 and x2 are images of elements u1 and u2 of the set U, the above
equation implies

1 1
1 2 1 2 1 2 1 2

1( ) ( )T Tu T Tu Tu Tu Tu Tu c u u
c

− −− ≤ − − ≥ −

ΟΕ∆.

Appendix B – Proof of Lemma 2
Consider any two elements u1 and u2 of the set U.  Then

( )

1 2 1 1 2 2

1 2 1 2

1 2 1 2

1 2

( ) ( )

1
U

U

I R u I R u u Ru u Ru

u u Ru Ru

u u R u u

R u u
∆

∆

+ − + = + − −

≥ − − −

≥ − − −

= − −

By eqn. (17) we have that 1 0UR
∆

− > .  Consequently, the operator ˆT I R= +  satisfies the

conditions of Lemma 1 with 1 0ˆ Uc R
∆

= − > .  Therefore, 1( )I R −+  exists on Y, and is bounded
as

1 1 1( )
1Y

U

I R
c R

−

∆
∆

+ ≤ = < ∞
−

ΟΕ∆.

Appendix C- Proof of Lemma 3
From Figure 1, we have
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( )( )

( )

r w d NQ LQ
r LQ w d NQ

I NQ LQ r w d

ε ε ε
ε ε

ε

= − + + −
= + − − −

+ − = − −
If ( )I NQ LQ+ −  is invertible, then the above equation implies

1( ) ( )I NQ LQ r w dε −= + − − − .
Therefore,

1( ) ( )y d NQ d NQ I NQ LQ r w dε −= + = + + − − − .
ΟΕ∆.

Appendix D – Proof of Corollary 1

( )
( )

1

1

1 1

1

( ) ( )

( ) ( )

( )( ) ( ) ( )

( )( ) ( )

y d NQ I NQ LQ d

I NQ I NQ LQ d

I NQ LQ I NQ LQ NQ I NQ LQ d

I LQ I NQ LQ d

−

−

− −

−

= + + − −
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Eqn. (21) is trivial.
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Appendix E – Proof of Lemma 4
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Appendix F – Proof of Lemma 5
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Appendix G – Proof of Theorem 1
Direct application of Lemma 2 with R NQ LQ← − , U E← , and ( )( )ˆY Z I NQ LQ E← = + −
along with eqn. (35) in place of eqn. (17) implies that 1( )I NQ LQ −+ −  exists on Z and is
bounded as
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∆
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(79)

which proves parts 1 and 2.
The equality in eqn. (36) of part 3 has been proven in Lemma 4.
To establish the upper bound of ZW N

∆
∆  in eqn. (36), we have
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the last equality owing to eqn. (34).

To establish the lower bound of ZW N
∆

∆  in eqn. (36), we apply the inequality
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ΟΕ∆.

Appendix H – Proof of Corollary 2

Trivial by combining eqn. (36) with the inequalities ( ) 1 ( )E EI NQ LQ N L Q
∆ ∆

+ − ≤ + −  and

( )( ) ) ( ) ( ) )E EW I LQ N L Q W I LQ N L Q
∆ ∆

− − ≤ − − , where the set over which the induced

norm ( ) ( )W I LQ W I LQ
∆

− = −  is computed is irrelevant because the operator ( )W I LQ−  is
linear, ΟΕ∆.
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Table 1 – Parameters of 2-CSTR system in Example 1 (Henson and Seborg,1990)

VARIABLE DEFINITION VALUE
CA1, CA2 Concentration of species A in CSTRs 1 and 2 State variables
T1, T2 Temperatures of CSTRs 1 and 2 State variables
qc Coolant flow rate Input variable
CA2 See above Output variable
CAf Feed concentration of species A 1 mol/L
Tf Feed temperature 350 K
Tcf Coolant feed temperature 350 K
q Feed flow rate 100 L/min
E/R Activation energy 1 x 104 K
V1= V2 Volumes of CSTRs 1 and 2 100 L
k0 Reaction rate constant 7.2 x 1010  min-1

-∆H Heat of reaction 4.78 x 1010 j/mol
h A1= hA2 (heat transfer coefficient)x (Area) 1.67 x 105 j/min/K
Cp= Cpc Specific heat 0.239 j/g/K
ρ=ρc Density 1000 g/L
qcs Steady state coolant flow rate 100 L/min
CA1s Steady state concentration of A in CSTR 1 0.088228 mol/L
CA2s Steady state concentration of A in CSTR 2 0.0052926 mol/L
T1s Steady state temperature of CSTR 1 441.2193 K
T2s Steady state temperature of CSTR 2 449.4746 K

Table 2: Lower and upper bounds of closed-loop nonlinearity in Example 1 according to
Theorem 1 and Corollary 3, for different values of λ in eqn. (60), 2p = .

λ = 0.1 λ = 1 λ = 5 or 10
εs ys us

minη vmax 2γ minη vmax 2γ minη vmax 2γ
0 0 0 0 0 0 0 0 0 0 0 0

………. ……. …… …… ……. ……….. …… ….. …… ….. ….. ……
1.25 x 10-3 1.4x 10-3 3.8896 0.2460 1.4485 0.7096 0.1693 0.3091 0.2923 0.153 0.2809 0.2923
1.50 x 10-3 1.8x 10-3 4.6676 0.2840 12.0216 0.9538 0.2006 0.4297 0.3635 0.181 0.3885 0.3635
1.75 x 10-3 2.1x 10-3 5.4455 NA NA 1.2625 0.2312 0.5951 0.4404 0.208 0.5353 0.4404

-------- -------- -------- ------- -------- -------- --------- -------- ------- ------- ------- ------
2.50 x 10-3 3.3x 10-3 7.7793 0.3206 1.9065 0.5488 0.2831 1.6836 0.4847
2.75 x 10-3 3.7x 10-3 8.5572 0.3499 3.5377 0.82 0.3067 3.1014 0.82
3.00 x 10-3 4.2x 10-3 9.3351 0.4582 14.558 0.939 0.3297 10.4762 0.939
3.25 x 10-3 4.7x 10-3 10.113 NA NA 1.3422 NA NA 1.0710
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Table 3 – Parameters of CSTR in Example 4

VARIABLE DEFINITION VALUE
CA Concentration of species A in CSTR State variable
T Temperatures of CSTR State & Output variable
F Feed flow rate value Input variable
CAi Feed concentration of species A 8008 mol/L
Ti Feed temperature 373.3 K
Tc Coolant feed temperature 532.6 K
E/R Activation energy/Gas constant 8375 K
V Volume of CSTR 1.36 m3

k0 Reaction rate constant 7.08x 107  hr-1

t

p

UA
Cρ

(heat transfer coefficient) x (transfer area)
(density) x (specific heat)

2.8 m3/hour

Fs Steady state feed flow rate 1.133 m3/hour
CAs Steady state concentration of A in CSTR 393.2 mol/m3

Ts Steady state temperature of CSTR 547.6 K

Table 4 – Lower and upper bounds of closed-loop nonlinearity in Example 4 according to
Theorem 1 and Corollary 3, for different values of λ in eqn. (71), 2p = .

λ = 0.1 λ = 1 λ = 5
εs ys us

minη vmax 2γ minη vmax 2γ minη vmax 2γ
0 0 0 0 0 0 0 0 0 0 0 0

….. …. …. …… ……. ….. …… ….. ….. ….. ….. …..
2.5 2.09 0.3387 …… …… …… 0.1840 0.3216 0.2751 …… …… ……
2.5 2.09 0.3387 0.2561* 0.4391* 0.2631*

11.25 5.39 1.5243 …… …… …… 0.4117 9.149 0.9139 …… …… ……
11.25 5.39 1.5243 0.5535* 9.2119* 0.8866*
….. …. …. …… ……. ….. …… ….. ….. ….. ….. …..

11.75 5.426 1.5921 0.4828 16.65 0.9436 0.418 14.43 0.9436 0.3513 12.11 0.9436
12.00 5.438 1.6259 0.4868 22.92 0.9584 0.422 19.87 0.9584 0.3541 16.678 0.9584
12.25 5.446 1.6590 0.4908 36.049 0.9731 0.4253 31.24 0.9731 0.3568 26.211 0.9731
12.50 5.451 1.6937 0.4949 80.629 0.9878 0.4285 69.82 0.9878 0.3595 58.58 0.9878
12.75 5.452 1.7276 NA NA 1.0024 NA NA 1.0024 NA NA 1.0024
13.00 5.450 1.7614 1.0170 1.0170 1.0170

*These numbers are computed for p = ∞ .
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Table 5: Van de Vusse CSTR parameters for Example 5

VARIABLE DEFINITION VALUE
CA, CB Concentration of species A and B State variables
T, TK Temperatures of CSTR and cooling jacket State variables
CB Concentration of species A and B Output variable

/ RV V� Flow rate Input variable
CA0 Feed concentration of species A 5.1 mol/L
To Feed temperature 104.9 C
QK Heat removal rate steady state value -1113.5 kJ/h
k10 Collision factor for reaction 1: 1 /

1 10( ) e E Tk T k −= 1.287x 1012  h-1

k20 Collision factor for reaction 2: 2 /
2 20( ) e E Tk T k −= 1.287x 1012  h-1

k30 Collision factor for reaction 3: 3 /
3 30( ) e E Tk T k −= 9.043x 109  (mol A)–1h-1

E1 Normalized activation energy for reaction 1 -9758.3 K
E2 Normalized activation energy for reaction 2 -9758.3 K
E3 Normalized activation energy for reaction 3 -8560 K
∆HRAB Enthalpies of reaction 1 4.2 k j/molA
∆HRBC Enthalpies of reaction 2 -11 k j/molB
∆HRAD Enthalpies of reaction 3 -41.85 k j/molA
kw heat transfer coefficient for cooling jacket 4.032kj/(h m2 K)
AR Surface of cooling jacket 0.215 m2

VR Reactor volume 0.01 m3

mK Coolant mass 5.0 kg
CpK Heat capacity of coolant 2.00 k j/(kg. K)
Cp Heat capacity 3.01 k j/(kg. K)
ρ Density 0.9342 kg/L
CAs Optimal steady-state concentration of A 2.1426 mol/L
CBs Optimal steady-state concentration of B 1.0903 mol/L
Ts Optimal steady-state temperature of CSTR 114.1466 C
TKs Optimal steady-state temperature of cooling jacket 112.8479 C
( )/ R s
V V� Optimal steady-state flow rate. 0.2483  1/min

CAs Sub-optimal steady-state concentration of A 2.4837 mol/L
CBs Sub-optimal steady-state concentration of B 1.0725 mol/L
Ts Sub-optimal steady-state temperature of CSTR 114.0389 C
TKs Sub-optimal steady-state temperature of cooling jacket 112.7544 C
( )/ R s
V V� Sub-optimal steady-state flow rate. 0.3316  1/min
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Table 6 – Lower and upper bounds of closed-loop nonlinearity in Example 5 according to
Theorem 1 and Corollary 3, for different values of λ in eqn. (78), 2p = .

λ = 1 λ = 10 λ = 100
εs ys us

minη vmax 2γ minη vmax 2γ minη vmax 2γ
0 0 0 0 0 0 0 0 0 0 0 0

….. …. …. …… ……. ….. …… …
0.030 0.0178 0.0688 0.0552 1.0691 0.9018 0.207 4.009 0.9018 0.2366 4.583 0.9018
0.031 0.0178 0.0711 0.0565 1.892 0.942 0.211 7.007 0.942 0.2421 8.1057 0.942
0.032 0.0179 0.0734 0.0578 6.7322 0.983 0.216 25.23 0.983 0.2474 28.79 0.983
0.033 0.0179 0.0757 NA NA 1.0247 NA NA 1.0247 NA NA 1.0247
0.034 0.0178 0.078 NA NA 1.0673 NA NA 1.0673 NA NA 1.0673

Table 7 – Lower and upper bounds of closed-loop nonlinearity in Example 7 according to
Theorem 1 and Corollary 3, for different values of λ in eqn. (78), p = ∞ .

λ = 1 λ = 5 λ = 10
εs ys us

minη vmax ∞γ minη vmax ∞γ minη vmax ∞γ
0 0 0 0 0 0 0 0 0 0 0 0
… … … … … … … … … … … …

1.25 x 10-3 1.4x 10-3 3.8896 0.2481 0.4502 0.2894 0.2145 0.3875 0.2874 0.214 0.386 0.2872
1. 50 x 10-3 1.8x 10-3 4.6676 0.2978 0.6331 0.3601 0.253 0.535 0.3575 0.252 0.533 0.3572
1.75 x 10-3 2.1x 10-3 5.4455 0.3491 0.8898 0.4365 0.290 0.734 0.433 0.289 0.731 0.4328

… … … … … … … … … … … …
2.75 x 10-3 3.7x 10-3 8.5572 0.567 9.0822 0.8825 0.429 4.01 0.8066 0.428 3.981 0.8059
3.00 x 10-3 4.2x 10-3 9.3351 NA NA 1.1503 0.462 11.64 0.9237 0.460 11.48 0.923
3.25 x 10-3 4.7x 10-3 10.113 1.565 NA NA 1.054 NA NA 1.053

Table 8 – Lower and upper bounds of closed-loop nonlinearity in Example 4 according to
Theorem 1 and Corollary 3, for different values of λ in eqn. (71), p = ∞ .

λ = 0.1 λ = 1 λ = 5
εs ys us

minη vmax ∞γ minη vmax ∞γ minη vmax ∞γ
0 0 0 0 0 0 0 0 0 0 0 0

….. …. …. …… ……. ….. …… …
11.75 5.4257 1.5921 0.592 20.361 0.9435 0.579 19.921 0.9435 0.487 16.658 0.9431
12.00 5.4377 1.6259 0.595 27.927 0.9583 0.584 27.405 0.9583 0.491 22.849 0.9579
12.25 5.446 1.659 0.598 43.687 0.973 0.588 43.005 0.973 0.495 35.64 0.9726
12.50 5.451 1.6937 0.601 96.772 0.9877 0.593 95.642 0.9877 0.499 77.677 0.9872
12.75 5.452 1.7276 NA NA 1.0023 NA NA 1.0023 NA NA 1.0018
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Table 9 – Lower and upper bounds of closed-loop nonlinearity in Example 5 according to
Theorem 1 and Corollary 3, for different values of λ in eqn. (78), p = ∞ .

λ = 1 λ = 10
εs ys us

minη vmax ∞γ minη vmax ∞γ
0 0 0 0 0 0 0 0 0

….. …. …. …… ……. ….. ……
3.0 10-2 0.0178 0.0688 0.088 1.8124 0.908 0.294 5.8338 0.904
3.1 10-2 0.0178 0.0711 0.089 3.3445 0.948 0.3009 10.4878 0.944
3.2 10-2 0.0179 0.0734 0.088 32.434 0.9946 0.3077 41.1243 0.9851
3.3 10-2 0.0179 0.0757 NA NA 1.0363 NA NA 1.0269

Table 10 – Lower and upper bounds of closed-loop nonlinearity in Example 7 according to
Theorem 1 and Corollary 3, for different values of λ in eqn. (78), 2p = .

λ = 0.1 λ = 1 λ = 5,10
εs ys us

minη vmax ∞γ minη vmax ∞γ minη vmax ∞γ
0 0 0 0 0 0 0 0 0 0 0 0
… ……. …… …… ……. ……….. …… ….. …… ….. ….. ……

1.25 x 10-3 1.4x 10-3 3.8896 0.073 0.4301 0.7096 0.0382 0.0697 0.2923 0.0377 0.0688 0.2923
1. 50 x 10-3 1.8x 10-3 4.6676 0.0859 3.6385 0.9538 0.0450 0.0964 0.3635 0.0444 0.0952 0.3635
1.75 x 10-3 NA NA 1.2625

… ------- -------- --------- -------- ------- ------- ------- ------
2.75 x 10-3 3.7x 10-3 8.5572 0.0763 0.7715 0.82 0.0751 0.7592 0.82
3.00 x 10-3 4.2x 10-3 9.3351 0.0821 2.6073 0.939 0.0807 2.5639 0.939
3.25 x 10-3 4.7x 10-3 10.113 NA NA 1.3422 NA NA 1.0710
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Figure 1 – Block diagram of IMC for a Nonlinear Process N.
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Figure 2 – Open-loop responses of the nonlinear CSTR of Example 2 (dashed lines) and of
its linearization around the nominal steady state of Table 1 (solid lines) for input step
changes of +9.3351 and +7.7793.
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Figure 3 – Closed-loop responses of (a) the nonlinear process (55)-(58) with the
designed IMC controller ( 10λ = ) and (b) the linearized system, eqn. (59), with the
same IMC controller (perfect model assumption), for pulse setpoint change of
amplitude 34.2 10−+ ×  mol/L.
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Figure 4 – Closed-loop responses of (a) the nonlinear process (55)-(58) with the designed
IMC controller ( 1λ = ) and (b) the linearized system, eqn. (59), with the same IMC
controller (perfect model assumption), for pulse setpoint change of amplitude 34.2 10−+ ×
mol/L.
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Figure 5 – Closed-loop responses of (a) the nonlinear process (55)-(58) with the designed
IMC controller ( 1λ = ) and (b) the linearized system, eqn. (59), with the same IMC
controller (perfect model assumption), for pulse setpoint change of amplitude 35.2 10−+ ×
mol/L.
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Figure 6 – Bode plots of (a) 1
( )FG jω

 (Thick lines) for various values of λλλλ, and (b)
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Figure 7 – Response of (a) the nonlinear closed loop with linear IMC and 0.1λ =  (dashed
line), and (b) the ideal linear closed loop with the same IMC (solid line), to setpoint step
change of magnitude 34.5 10−+ × .  Measurement is delayed by 5 time units (Example 3).
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Figure 8 – Response of (a) the nonlinear closed loop with linear IMC and 10λ =  (dashed
line), and (b) the ideal linear loop with the same IMC (solid line), to setpoint step change of
magnitude 34.5 10−+ × .  Measurement is delayed by 5 time units (Example 3).
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Figure 9 – Response of a linear closed loop, with linear process L, measurement delay of 5,
and linear IMC employing a model L and filter F with 0.1λ =  to setpoint change of

34.2 10−+ ×  (Example 3).
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Figure 10 – Step responses of ideal linear (solid line) and nonlinear (dashed line) closed-
loops with linear IMC (λλλλ=1) to setpoint change +5.5 (Example 4).
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Figure 11 – Scaled difference N Ly y
R
−  between the response of the nonlinear closed loop,

yN, and the ideal linear closed loop, yL, to setpoint changes, R, of magnitudes 2.09 (solid
line) and 5.39 (dashed line).  Both loops contain the same linear IMC controller with 1λ =
(Example 4).
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Figure 12: Incremental norm with different sign of input change for different filter
coefficients 1,10,100λ =  (Example 5).
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Figure 13 – Scaled difference N Ly y
R
−  between the response of the nonlinear closed loop,

yN, and the ideal linear closed loop, yL, to setpoint changes, R, of magnitudes 3.74 (solid
line) and 4.29 (dashed line).  Both loops contain the same linear IMC controller with 1λ =
(CSTR with unstable inverse, Example 6).
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Figure 14 – Scaled difference N Ly y
R
−  between the response of the nonlinear closed loop,

yN, and the ideal linear closed loop, yL, to setpoint changes, R, of magnitudes 0.0025 (solid
line) and 0.0029 (dashed line).  Both loops contain the same linear IMC controller with

1λ =  (two CSTRs in series, Example 6).
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Figure 15 – Scaled difference N Ly y
R
−  between the response of the nonlinear closed loop,

yN, and the ideal linear closed loop, yL, to setpoint changes, R, of magnitudes 0.0145 (solid
line) and 0.0158 (dashed line).  Both loops contain the same linear IMC controller with

1λ =  (van de Vusse CSTR, Example 6).

0 10 20 30 40 50 60 70 80 90 100
-16

-14

-12

-10

-8

-6

-4

-2

0

2

4
x 10-3

time

N Ly y
R
−



52

Figure 16 – Scaled difference N Ly y
R
−  between the response of the nonlinear closed loop,

yN, and the ideal linear closed loop, yL, to setpoint changes, R, of magnitudes 3.74 (solid
line) and 4.29 (dashed line).  Both loops contain the same linear IMC controller with 5λ =
(CSTR with unstable inverse, Example 6).
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Figure 17 – Scaled difference N Ly y
R
−  between the response of the nonlinear closed loop,

yN, and the ideal linear closed loop, yL, to setpoint changes, R, of magnitudes 0.0025 (solid
line) and 0.0029 (dashed line).  Both loops contain the same linear IMC controller with

5λ =  (two CSTRs in series, Example 6).
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Figure 18 – Scaled difference N Ly y
R
−  between the response of the nonlinear closed loop,

yN, and the ideal linear closed loop, yL, to setpoint changes, R, of magnitudes 0.0145 (solid
line) and 0.0158 (dashed line).  Both loops contain the same linear IMC controller with

10λ =  (van de Vusse CSTR, Example 6).
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Figure 19 – Filtered output differences ( )N LW y y−  for different filters W.  Note for

1( )
0.1 1WG s

s
=

+
 we obtain the same N Ly y−  as in Figure 14.
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