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Model Predictive Controllers:  A Cr itical Synthesis of Theory and Industr ial Needs

Michael Nikolaou1

Chemical Engineering Dept.
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Abstract – After several years of efforts, constrained model predictive control (MPC), the de facto standard
algorithm for advanced control in process industries, has finally succumbed to rigorous analysis.  Yet successful
practical implementations of MPC were already in place almost two decades before a rigorous stability proof for
constrained MPC was published.  What is then the importance of recent theoretical results for practical MPC
applications?  In this publication we present a pedagogical overview of some of the most important recent
developments in MPC theory, and discuss their implications for the future of MPC theory and practice.
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“There is nothing more practical than a good theory.”
Boltzmann

1 Introduction
The last couple of decades have witnessed a steady growth in the use of computers for advanced control of process
plants.  Rapid improvements in computer hardware, combined with stiff foreign and domestic competition and
government regulations have been largely responsible for this development.  With over 2000 industrial installations,
model predictive control (MPC) is currently the most widely implemented advanced process control technology for
process plants (Qin and Badgwell, 1996).  As is frequently the case, the idea of MPC appears to have been proposed
long before MPC came to the forefront (Propoi, 1963;  Rafal and Stevens, 1968;  Nour-Eldin, 1971).  Not unlike
many technical inventions, MPC was first implemented in industry – under various guises and names – long before a
thorough understanding of its theoretical properties was available.  Academic interest in MPC started growing in the
mid eighties, particularly after two workshops organized by Shell (Prett and Morari, 1987;  Prett et al., 1990).  The
understanding of MPC properties generated by pivotal academic investigations (Morari and Garcia, 1982;  Rawlings
and Muske, 1993) has now built a strong conceptual and practical framework for both practitioners and
theoreticians.  While several issues in that framework are still open, there is now a strong foundation.  The purpose
of this paper is to examine some of the recent developments in the theory of MPC, discuss their theoretical and
practical implications, and propose directions for future development and research on MPC.  We hope that both
practitioners and theoreticians will find the discussion useful.  We would like to stress that this work does not
purport to be an exhaustive discussion on MPC to any extent beyond what the title of the work implies.  In
particular, important practical issues such as the efficiency and effectiveness of various numerical algorithms used to
solve the on-line optimization problems, human factors, fault tolerance, detection and diagnosis, and programming
environments for MPC implementation are hardly touched upon in any way other than what pertains to their
implications for theoretically expected MPC properties.

2 What is MPC?
While the MPC paradigm encompasses several different variants, each one with its own special features, all MPC
systems rely on the idea of generating values for process inputs as solutions of an on-line (real-time) optimization
problem.  That problem is constructed on the basis of a process model and process measurements.  Process
measurements provide the feedback (and, optionally, feedforward) element in the MPC structure.  Figure 1 shows
the structure of a typical MPC system.  It makes it clear that a number of possibilities exist for

•  Input-output model,
•  disturbance prediction,
•  objective,
•  measurement,
•  constraints, and
•  sampling period (how frequently the on-line optimization problem is solved).

Regardless of the particular choice made for the above elements, on-line optimization is the common thread tying
them together.  Indeed, the possibilities for on-line optimization (Marlin and Hrymak, 1997) are numerous, as
discussed in section 6.2.2.1.

Figure 1 also makes it clear that the behavior of an MPC system can be quite complicated, because the
control action is determined as the result of the on-line optimization problem.  While engineering intuition may
frequently be used in the analysis of the behavior or in the design of MPC systems, theory can provide valuable
help.  Theory can augment human judgement and intuition in the development and implementation of better MPC
systems that can realize their full potential as “advanced”  control systems.  Some of the benefits of improved MPC
systems are better control performance, less down time, reduced maintenance requirements, and improved flexibility
and agility.

The origins of MPC applications in industry are quite interesting.  While the author is more familiar with
US industry, developments overseas seem to have followed a similar path.  The first use of computers to calculate an
on-line economic optimal operating point for a process unit appears to have taken place in the late nineteen fifties.
Åström and Wittenmark (1984, p. 3) cite March 12, 1959 as the first day when a computer control system went on-
line at a Texaco refinery in Port Arthur, Texas.  The computer control system, designed by Ramo-Wooldridge (later
TRW), relied on an RW-300 computer.  Baxley and Bradshaw (1998) mention that around the same time (1959)



– 4 –

Union Carbide, in collaboration with Ramo-Wooldridge, implemented an on-line computer control and optimization
system, based also on the RW300, at the Seadrift, Texas plant’s ethylene oxide unit.  The implementation was not a
classical mathematical programming type optimization.  It was an implied “maximize production”  optimization with
a feed allocation algorithm for multiple parallel reactors followed by a serial train of reactors to convert all the
remaining ethylene before exhausting to the air.  However, there was no open publication reporting this venture.
Baxley and Bradshaw (1998) believe that the first open report related to a similar computer control venture was by
Monsanto.  It appears that computer control and on-line optimization were ideas whose time had come.  It also
appears that on-line optimization was performed every few hours at the supervisory level, using steady-state models.
Certainly, the speed and storage capacity of computers available at the time must have played a role.  As the
capability of computers increased, so did the size and sophistication of on-line optimization.  Early projects usually
included ethylene units and major oil refinery processes such as crude distillation units and fluid catalytic cracking
(FCC) units (Darby and White, 1988).  “The objective function was generally an economic one but we had the
flexibility to select alternative ones if the operating and/or business environment suggested another, e.g., maximize
ethylene production, minimize ethylene costs, etc.  We were getting the tools to be more sophisticated and we took
advantage of them where it made economic sense.”   (Baxley and Bradshaw, 1998).

Figure 1.  Model Predictive Control Scheme

In the early seventies, practitioners of process control in the chemical industry capitalized on the increasing
speed and storage capacity of computers, by expanding on-line optimization to process regulation through more
frequent optimization.  This necessitated the use of dynamic models in the formulation of on-line optimization
problems that would be solved every few minutes.  What we today call MPC was conceived as a control algorithm
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that met a key requirement, not explicitly handled by other control algorithms:  The handling of inequality
constraints.  Efficient use of energy, of paramount importance after the 1973 energy crisis, must have been a major
factor that forced oil refineries and petrochemical plants to operate close to constraints, thus making constrained
control a necessity.

At the time, the connection of MPC to classical control theory was, at best, fuzzy, as manifested by the title
of perhaps the first journal publication reporting the successful application of the MPC algorithm in the chemical
process industry:  “Model Predictive Heuristic Control:  Applications to Industrial Processes”  (Richalet et al.,
1978).  As is often the case, ingenuity and engineering insight arrived at the same result that others had reached after
taking a different route, whether theoretical or heuristic.  Where the MPC idea first appeared as a concept is difficult
to trace.  Prett and García (1988) cite Propoi (1963) as the first who published essentially an MPC algorithm.  Rafal
and Stevens (1968) presented essentially an MPC algorithm with quadratic cost, linear constraints, and moving
horizon of length one.  They controlled a distillation column for which they used a first-principles nonlinear model
that they linearized at each time step.  In many ways, that publication contained several of the elements that today’s
MPC systems include.  It is evident that the authors were fully aware of the limitations of the horizon of length one,
but were limited by the computational power available at the time:

…the step-by-step optimal control need not be overall optimal. … In the present work, the one-
step approach is taken because it is amenable to practical solution of the problem and is well
suited to nonlinear situations where updating linearization is useful.  (Rafal and Stevens, 1968, p.
85).

Mayne et al. (1998) provide a quote from Lee and Markus (1967, p. 423) which essentially describes the MPC
algorithm.  Nour-Eldin (1971, p. 41), among others, explicitly describes the on-line constrained optimization idea,
starting from the principle of optimality in dynamic programming:

2Zusammenfassend:  Beim Zeitpunkt 1−kt  wird das Optimum von Zk gesucht.  Der resultierende

Steuerungsvektor )(* kU  hängt von )1( −kx  ab und enthält sämtliche Steuervektoren *
ku ,

*
1+ku ,…, *

Nu  welche den Prozess während dem Intervall ],[ 1 Ttk−  optimal steuern.  Von diesem

Steuervektoren verwendet man den Vektor *
ku  (welcher von )1( −kx  abhängt) als Steuervektor

für das nächste Intervall ],[ 1 kk tt − .  Beim nächsten Zeitpunkt tk wird ein neuer Steuervektor *
1+ku

bestimmt.  Dieser wird aus der Zielfunktion 1+kZ  berechnet und ist von )(kx  abhängig.  Damit

wird der Vektor ku , welcher im Intervall τ k verwendet wird, vom Zustandsvektor )1( −kx

abhängig.  Das gesuchte Rückführungsgesetz besteht somit aus der Lösung einer convexen
Optimierungsaufgabe bei jedem Zeitpunkt 1−kt  ( Nk ,,2,1 �= )  (Underlining in the original text.)

While the value of on-line constrained optimization is explicitly identified in the above passage, the concept of
moving horizon is missing.  That is, perhaps, due to the fact that the author was concerned with the design of
autopilots for airplane landing, a task that has a finite duration T.  The algorithm described above is, essentially, the
mathematical equivalent of MPC for a batch chemical process.

In the sixties and seventies, in contrast to literature references to the constrained on-line optimization
performed by MPC, which were only sporadic, there was an already vast and growing literature on a related
problem, the linear-quadratic regulator (LQR) either in deterministic or stochastic settings.  Simply stated, the LQR
problem is

                                                          
2  Summarizing:  At the time point 1−kt  the optimum of the [quadratic objective function] Zk is sought.  The

resulting control [input] vector )(* kU  depends on )1( −kx  and contains all control [input] vectors *
ku , *

1+ku ,…,

*
Nu  which control the process optimally over the interval ],[ 1 Ttk− .  Of these control [input] vectors, one

implements the vector *
ku  (which depends on )1( −kx ) as input vector for the next interval ],[ 1 kk tt − .  At the next

time point tk a new input vector *
1+ku  is determined.  This is calculated from the objective function 1+kZ  and is

dependent on )(kx .  Therefore, the vector ku , which is implemented in the interval τk, is dependent on the state

vector )1( −kx .  Hence, the sought feedback law consists of the solution of a convex optimization problem at each

time point 1−kt  ( Nk ,,2,1 �= ). (Translation by the author.)
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( 1 ) ∑
=

+
p

i

TT iiii
0

][][][][min RuuQxx
ux,

where
( 2 ) 0]0[],[][]1[ xxBuAxx =+=+ iii

and the optimization horizon length p could be finite or infinite.  A celebrated result of LQR theory was
( 3 ) piiii optopt ,,1],[][][ �== xKu

known as the “ feedback form”  of the optimal solution to the optimization problem posed by eqns. ( 1 ) and ( 2 ).
The state feedback gain K [i] is not fixed, and is computed from the corresponding Riccati equation.  Yet, for finite
p, this viewpoint of feedback referred to a set of shrinking horizons ending at the same time point, thus
corresponding to a control task that would end at time p.  Of course, p could be equal to infinity (in which case K
would be fixed) but then that formulation would not lend itself to optimization subject to inequality constraints (for
which no explicit solution similar to eqn. ( 3 ) could be obtained) because it would involve an infinite number of
decision variables.  The ideas of a finite moving horizon and on-line optimization somehow did not occupy much of
the research community, although it appears that they were known.  In fact, a lot of effort was expended to avoid on-
line optimization, given the limited capabilities of computers of that era and the fast sampling of systems for which
LQR was developed (e.g. aerospace).

Over the years, the heuristics of the early works on MPC were complemented by rigorous analysis that
elucidated the essential features, properties, advantages, and limitations of MPC.  In the next section, we will start
with a smooth introduction to a simple (if not limiting) MPC formulation, that was popular in the early days of
MPC.  We will then identify some of its many variants.

2.1 A traditional MPC formulation
Consider a stable single-input-single-output (SISO) process with input u and output y.  A formulation of the MPC
on-line optimization problem can be as follows:  At time k find

( 4 ) ( ) ∑∑
==−+

−+∆+−+
m

i
i

p

i

sp
i

kpkukku
kikurykikyw

1

2

1

2

]1[,],[
]1[][min�

subject to
( 5 ) miukikuu ,,1,]1[ minmax

�=≥−+≥

( 6 ) miukikuu ,,1,]1[ maxmax
�=∆−≥−+∆≥∆

( 7 ) piykikyy ,,1,][ minmax
�=≥+≥

where p and pm<  are the lengths of the process output prediction and manipulated process input horizons,

respectively;  ]1[ kiku −+ , pi ,,1 �= , is the set of future process input values with respect to which the

optimization will be performed, where
( 8 ) ]1[][ kmkukiku −+=+ ,  1,, −= pmi � ;

 ySP is the set-point;  and 
	�
 �� � ��� � � � ��� � ��� 
 � � � � � � � ��� � � � �  � �  
 ! � !

( 9 ) ]2[]1[ˆ]1[ kikukikukiku −+−−+=−+∆
In typical MPC fashion (Prett and Garcia, 1988), the above optimization problem is solved at time k, and the optimal
input ][][ kkuku opt=  is applied to the process.  This procedure is repeated at subsequent times k+1, k+2, etc.

It is clear that the above problem formulation necessitates the prediction of future outputs ][ kiky + .  This,

in turn, makes necessary the use of a model for the process and external disturbances.  To start the discussion on
process models, assume that the following finite-impulse-response (FIR) model describes the dynamics of the
controlled process:

( 10 ) ][][][
1

kdjkuhky
n

j
i +−= ∑

=

where hi are the model coefficients (convolution kernel) and d is a disturbance.  Then

( 11 ) ][][][
1

kikdkjikuhkiky
n

j
j ++−+=+ ∑

=

where
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( 12 ) 0],[][ <−−+=−+ jijikukjiku

The prediction of the future disturbance ][ kikd +  clearly can be neither certain nor exact.  An approximation or

simplification has to be employed, such as

( 13 ) ∑
=

−−==+
n

j
j jkuhkykkdkikd

1
][][][][

where y[k] is the measured value of the process output y at sampling point k and ][ jku −  are past values of the

process input u.  Substitution of eqns. ( 11 ) to ( 13 ) into eqns. ( 4 ) to ( 7 ) yields

( 14 ) ∑∑ ∑∑
== ==−+

−+∆+
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( 15 ) minmax ]1[ ukikuu ≥−+≥  ,       mi ,,2,1 #=

( 16 ) maxmax ]1[ ukikuu ∆−≥−+∆≥∆  ,       mi ,,2,1 $=

( 17 ) piykyjkuhkjikuhy
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j

n

j
j ,,1,][][][ min

11
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==

The above optimization problem is a quadratic programming problem, which can be easily solved at each time k.

2.2 Expanding the traditional MPC formulation
The above formulation of MPC was typical in the first industrial implementations that dealt with stable processes
modeled by finite-impulse-response (FIR) models.  FIR models, although not essential for characterizing a model-
based algorithm as MPC, have certain advantages from a practical implementation viewpoint:  Time delays and
complex dynamics can be represented with equal ease.  Mistakes in the characterization of colored additive noise as
white in open-loop experiments introduce no bias in parameter estimates.  No advanced knowledge of modeling and
identification techniques is necessary if simple step-response experiments are used for process identification.
Instead of the observer or state estimator of classic optimal control theory, a model of the process is employed
directly in the algorithm to predict future process outputs (Morari, 1988).  Their main disadvantage is the use of too-
many parameters (overparametrization), which becomes even more pronounced in the multivariable case.

While a large class of processes can be treated by that formulation, more general classes can be handled by
more general MPC formulations concentrating on the following characteristics:
- Unstable process model.  In that case, an FIR process model cannot be used.  A state-space model such as

( 18 )
][][][][

][][][]1[

kekukky

kdkukk

FDCx

EBAxx

++=
++=+

or a deterministic auto-regressive-moving-average with exogenous input (DARMAX) model

( 19 ) ∑∑∑
===

−+−+−=
dyu n

i
i

n

i
i

n

i
i ikdfikygikuhky

111
][][][][

can be used.  As MPC systems grow in size, the probability of including an unstable or marginally stable
(integrating) unit increases.  For such units, models as in eqns. ( 18 ) or ( 19 ) are necessary.
- Nonlinear process model.  The nonlinearity of chemical processes is well documented (Shinskey, pp. 55-56, 1967;
Foss, 1973;  Buckley, 1981;  García and Prett, 1986;  Morari, 1986;  IEEE Report, 1987;  NRC Committee Report,
p. 148, 1988;  Fleming, 1988;  Prett and García, p. 18, 1988;  Edgar, 1989;  Longwell, 1991;  Bequette, 1991;  Kane,
1993; Allgöwer and Doyle, 1997;  Ogunnaike and Wright, 1997).  Typical examples are distillation columns and
reactors.  Because nonlinear models are defined by what they are not (namely linear) there exist a number of
possibilities for representing nonlinear systems.  First-principles, empirical, or hybrid models in state-space or input-
output frameworks are all possible.  In addition, the development and adaptation of such models is a central issue in
MPC.
- Stochastic disturbance model.  There are various possibilities for using stochastic disturbance models other than
the zero-order model shown in eqn. ( 13 ) (Ljung, 1987).
- Stochastic objective function:  The above MPC formulation assumes that future process outputs are deterministic
over the finite optimization horizon.  For a more realistic representation of future process outputs, one may consider
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a probabilistic (stochastic) prediction for ][ kik +y  and formulate an objective function that contains the expectation

of appropriate functionals.  For example, if ][ kik +y  is probabilistic, then the expectation of the functional in eqn. (

4 ) could be used.  This formulation, known as open-loop optimal feedback, does not take into account the fact that
additional information would be available at future time points ik + , and assumes that the system will essentially
run in open-loop fashion over the optimization horizon.  An alternative, producing a closed-loop optimal feedback
law, relies on the dynamic programming formulation of an objective function such as the following:

( 20 ) ( ) ( ) 









 +++∆+−+++∆+−+
++

&22
2

]11[

22
1

][
]11[]12[min][]1[min kkuykkywkkuykkyw sp

kku

sp

kku

While the open-loop optimal feedback law does not result in unwieldy computational requirements, the closed-loop
optimal feedback law is considerably more complicated.  For several practical problems the open-loop optimal
feedback law produces results that are close to those produced by the closed-loop optimal feedback law.  However,
there are cases for which the open-loop optimal feedback law may be far inferior to the closed-loop optimal
feedback law.  Rawlings et al. (1994) present a related example on a generic staged system.  Lee and Yu (1997)
show that open-loop optimal feedback is, in general, inferior to closed-loop optimal feedback for nonlinear
processes and linear processes with uncertain coefficients.  They also develop a number of explicit closed-loop
optimal feedback laws for a number of unconstrained MPC cases.
- Available measurements:  For controlled variables that are not directly measurable, measurements have to be
inferred by measurements of secondary variables and/or laboratory analysis of samples.  Good inference relies on
reliable models.  In addition, the results of laboratory analysis, usually produced much less frequently than
inferential estimates, have to be fused with the inferential estimates produced by secondary measurements.

For MPC systems that use state-space models, usually not all states are measurable, thus making state
estimators necessary (Lee et al., 1994).
- Constraints:  While constraints placing bounds on process inputs are trivial to formulate, constraints on process
outputs are more elusive, because future process outputs ][ kik +y  are predicted in terms of a model.  If the

probability density function of ][ kik +y  is known, then deterministic constraints on ][ kik +y  can be replaced by

probabilistic constraints of the form
( 21 ) α≥≤+ }][Pr{ maxykiky

(Schwarm and Nikolaou, 1997).
- Sampling period:  The selection of the time points tk at which on-line optimization is performed (Figure 1) is an
important task, albeit not as widely studied as other MPC design tasks.  Things become more interesting when
measurements or decisions take place at different time intervals for different variables (Lee et al., 1992).  The
multitude of different time-scales is usually handled through decomposition of the overall on-line optimization
problem into independently solved subproblems, each at a different time-scale.

2.3 MPC without inequality constraints
When there are no inequality constraints (eqns. ( 15 ) to ( 17 )), the minimization of the quadratic objective function
in eqn. ( 4 ) has a simple closed-form solution, which can be expressed as follows.  Eqns. ( 11 ) and ( 13 ) yield

( 22 ) ][1|1
|

|
|1 kk
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kpk
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kpk

kk yGuHuy ++= −
−

−++
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where, assuming that np > ,

( 23 ) [ ]Tkpk
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+ 'y
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and eqn. ( 4 ) becomes
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The straightforward solution of the optimization problem in the above equation is

( 38 )
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where ][][ˆ][ kkk SP yye −= , and the input u[k] that will eventually be implemented will be
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kkopt
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Therefore, the controller is a linear time-invariant controller, and no on-line optimization is needed.  Linear control
theory, for which there is a vast literature, can equivalently be used in the analysis or design of unconstrained MPC
(Morari and Garcia, 1982).  A similar result can be obtained for several MPC variants, as long as the objective

function in eqn. ( 4 ) remains a quadratic function of kpk
kkopt

|1
|

−+u  and the process model in eqn. ( 22 ) remains

linear in kpk
kkopt

|1
|

−+u .  Incidentally, notice that the appearance of the measured process output y[k] in eqn. ( 22 )

introduces the measurement information needed for MPC to be a feedback controller.  This is in the spirit of
classical linear optimal control theory, in which the controlled process state x[k] contains the feedback information
needed by the controller.

Whether one performs the analysis and design using directly a closed form of MPC such as in eqn. ( 4 ) or
its equivalent on-line optimization form, eqn. ( 38 ), is a matter of convenience in translation of engineering
requirements into equations.  For example, eqn. ( 38 ) can be used to determine the poles of the controller, and
consequently, the closed-loop behavior (e.g, stability, zero offset, etc.).  On the other hand, eqn. ( 4 ) can be directly
used to help tune the MPC system.  For example, it intuitively makes it clear that the “smaller”  the matrix R, the
faster the closed-loop will be, at the risk of approaching instability.  Similarly, the process output y will track step
changes in the setpoint ySP if the prediction horizon length p is long enough.  An overview of MPC within a linear
control framework can be found in Mosca (1995).  Clarke and coworkers have used the term generalized predictive
control (GPC) to describe an essentially unconstrained MPC algorithm (Clarke et al., 1987;  Bitmead et al., 1990).

The situation is quite different when inequality constraints are included in the MPC on-line optimization
problem.  In the sequel, we will refer to “ inequality constrained MPC” simply as “constrained MPC”.  For
constrained MPC, no closed-form (explicit) solution can be written.  Because different inequality constraints may be
active at each time, a constrained MPC controller is not linear, making the entire closed loop nonlinear.  To analyze
and design constrained MPC systems requires an approach that is not based on linear control theory.  We will
present the basic ideas in Section 3.  We will then present some examples that show the interesting behavior that
MPC may demonstrate, and we will subsequently explain how MPC theory can conceptually simplify and
practically improve MPC.

3 Stability

3.1 What is stability?
The concept of stability is central in the study of dynamical systems.  Loosely speaking, stability is a dynamical
system’s property related to “good”  long-run behavior of that system.  While stability by itself may not necessarily



– 11 –

guarantee satisfactory performance of a dynamical system, it is not conceivable that a dynamical system may
perform well without being stable.

Stability can be quantified in several different ways, each providing insight into particular aspects of a
dynamical system’s behavior.  Mathematical descriptions of the system and its surroundings are necessary for
quantitative results.  Two broad classes of stability definitions are associated with

(a) stability with respect to initial conditions and
(b) input-output stability,

respectively.  The two classes are complementary to each other and can also be combined.  For linear systems the
two classes are, in general, equivalent.  However, they are different (although interrelated) for nonlinear dynamical
systems.  Next, we make these ideas precise and illustrate their implications through a number of examples.  The
discussion encompasses both discrete- and continuous-time systems.  Full details of pertinent mathematical
underpinnings can be found in standard textbooks on nonlinear systems, such as Vidyasagar (1993)

3.1.1 Stability with respect to initial conditions
Consider a system described by the vector difference equation
( 39 ) ])[,(]1[ kkk xfx =+ ,   0≥k

where nℜ→+x :  and nn ℜ→ℜ×+f : .  Without loss of generality, the vector 0 is assumed to be an

equilibrium point of the system ( 39 ).  The system is said to be stable around the equilibrium point 0 if the state x
eventually returns to 0 when its initial value is anywhere within a small neighborhood around 0.  The preceding
statement is accurately captured in the following definitions.
Definition 1 – Stability
The equilibrium point 0 at time k0 of eqn. ( 39 ) is said to be stable at time k0 if, for any 0>ε , there exists a

0),( 0 >εδ k  such that

( 40 ) 000 kkkkk ≥∀ε<⇒εδ< qrstqurs xx

Definition 2 – Uniform stability
The equilibrium point 0 at time k0 of eqn. ( 39 ) is said to be uniformly stable over vwx ∞0k  if, for any 0>ε , there

exists a 0>εδ yz  such that

( 41 ) {{
{

≥∀ε<⇒




≥
εδ<

kk
k |

}~��}~
x

x

0
.

Definition 3 – Asymptotic stability
The equilibrium point 0 at time k0 of eqn. ( 39 ) is said to be asymptotically stable at time k0 if

(a) it is stable at time k0 and
(b) (b) there exists a 00 >δ �� k  such that

( 42 ) 000 =⇒δ<
∞→

��� � �����
kkk

k
xx .

Definition 4 – Uniform asymptotic stability
The equilibrium point 0 at time k0 of eqn. ( 39 ) is said to be uniformly asymptotically stable over ��� ∞0k  if

(a) it is uniformly stable over ��� ∞0k  and

(b) (b) there exists a 0>δ  such that

( 43 ) 0
0

=⇒




>
δ<

∞→

��� � ���
k

k k
x

x �
�

.

Definition 5 – Global asymptotic stability
The equilibrium point 0 at time k0 of eqn. ( 39 ) is said to be globally asymptotically stable if
( 44 ) 0=

∞→

��� � �
k

k
x

for any �� 0kx .

Remarks
•  Although there are no requirements on the magnitude of δ that appears in the above definitions, in practice δ is

desired to be as large as possible, to ensure the largest possible range of initial states that eventually go to 0.
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•  It is not important what particular norm ||* || in ℜ n is used in equations ( 40 ) and ( 41 ), because any two norms

||* ||a and ||* ||b in ℜ n are equivalent, i.e. there exist positive constants k1 and k2 such that aba kk xxx 21 ≤≤

for any nℜ∈x .  We will see that the choice of particular norm is important in input-output stability.
•  As the above definitions imply, for a system not to be stable around 0, it is not necessary for the system to

produce signals that grow without bounds.  The following example illustrates the case.
Example 1 – Unstable system with bounded output
For the feedback system described by the equation
( 45 ) ])[2(][5.0]1[ kxSatkxkx +=+ ,   0100 ��� =x ,
where the saturation function is defined as

( 46 )
î





−<−
≤≤−

>
=

1 if1

1y1 if

1 if1

)(

y

y

y

ySat ,

the point 0 is an unstable equilibrium point, because x moves away from 0 for any 0]0[ ≠x , but it does not ever
grow without bound, as Figure 2 shows.
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Figure 2.  A bounded-output system that is unstable with respect to initial conditions )01.0]0[( =x

Example 2 – Unstable CSTR with bounded output
Consider the reaction PR →  occurring in a non-isothermal jacket-cooled CSTR with three steady states, A, B, C,
corresponding to the intersection points of the two lines shown in Figure 3 (Stephanopoulos, 1984, p. 8).  The steady
state B, corresponding to the temperature T2 is unstable with respect to initial conditions.  Indeed, if the CSTR is
initially at temperature ε+2T , then it will eventually reach either of the finite temperatures T1 or T3, according to

whether ε is negative or positive.
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Figure 3.  The three steady states of the non-isothermal CSTR in Example 2

3.1.2 Input-output stability
Input-output stability refers to the effect of system inputs to system outputs.  Therefore, the emphasis is how the
magnitudes of inputs and outputs are related.  We make these ideas of magnitude, system, and stability more precise
below.
Definition 6 – p-norms
The magnitude of a signal nℜ→+x :  is quantified by its p-norm, defined as

( 47 )
p

k

p
p

k

 
¡¢£ 1

1






= ∑

∞

=
xx

where ∞≤≤ p1  and ¤¥ kx  can be any Euclidean norm in nℜ .

Based on the above definition, we can provide a first definition of stability.
Definition 7 – Bounded-input-bounded-output (BIBO) stability
A system S, mapping an input signal u to an output signal x with 00 =)(S , is stable if bounded inputs produce

bounded outputs, i.e.,
( 48 ) ∞<⇒∞< qp xu

An alternative statement of eqn. ( 48 ) is

( 49 ) m
q

m
p ll ∈⇒∈ xu

where

( 50 ) ¦§¨© ∞<ℜ→Ζ= p
mm

pl zz

A usual convention is to choose qp =  in the above Definition 7, although different values for p and q may be

selected.  For example, the option ∞=p , 2=q  may be selected so that step inputs (for which ∞=2u  but

∞<∞u ) can be included.

While Definition 7 is useful in characterizing instability in a meaningful way, it is not always as useful in
characterizing stability in a meaningful way as well, as the following example shows.
Example 3 – BIBO stability
Consider the system of the following Figure 4.
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Figure 4.  The feedback system of Example 3.
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Figure 5.  A system that is input-output BIBO stable.

A pulse disturbance d of any amplitude drives the output y of the system to the final steady-state value 2, while the
input u reaches a steady state value of 1, and the variable v reaches a steady state value of 4.  Figure 5 shows the
response of the system for pulses d of amplitude 1 (diamond), 0.1 (square), and 0.01 (triangle).  It is clear that the
system output y does not return to the desired value of 0, so the system should not be characterized as stable.  Yet
the BIBO stability criterion with the ∞-norm would characterize this system as stable, because ∞<∞y  for any
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input d.  Of course, a different norm py  with ∞<≤ p1  might be used, in which case the system would be

characterized as BIBO unstable.  The compromise would be that systems generating signals such as

pk
ky ª«¬® 11

1

+
=  would also be BIBO unstable (because ∞=











+
= ∑
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=0
11

1

k
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p
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∞→

²³´ µ ¶
ky

k
.

A better definition of stability would require not only that bounded inputs produce bounded outputs, but also that the
amplification of bounded inputs by the system is finite.  More precisely, we have the following definition of finite-
gain stability.
Definition 8 – Finite-gain (FG) stability

A system uxu SllS n
q

m
p =→ ·¸¸ ¹ , is finite-gain stable if the gain (induced norm) of S is finite, i.e.,

( 51 ) ∞<=
−∈ p

q

l
pqi

m
p

S
u

x

0u º»¼¾½ ¿ ÀÁ

The advantage of FG stability over BIBO stability is that systems such as in Example 3 no longer have to
be characterized as stable, a conclusion that agrees with intuition.  Indeed, for Example 3 we have that pulses of
infinitesimally small amplitude drive the output y to 2, consequently

( 52 ) ∞=≥=
∞→∞

∞

−∈
∞∞

∞∞
dd

y
S

d
ld

i
2

001

Â Ã ÄÅ Æ ÇÈ ÉÊË
The shortcoming of Definition 8 is that the input signal u can vary over the entire space m

pl .  This creates

two problems:

(a) The entire space m
pl  may contain physically meaningless signals;  and

(b) The stability characteristics of S may be different over different subsets of m
pl .

The following two examples clarify the above statements.
Example 4 – Selecting physically meaningful inputs to character ize stability
Consider a continuous stirred-tank heater modeled by the following equations, in continuous time:
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where
V = heater volume
Fs = volumetric feed flowrate at steady state
Ti = feed temperature
T = heater temperature
Tc = heating coil temperature
U = heat transfer coefficient
A = heat exchange area
ρ = density of liquid in heater
cp = specific heat of liquid in heater

The above equation defines an operator yuS Ì: , where u refers to the feed flowrate and y to temperature, both in

deviation form.  It can be shown (Nikolaou and Manousiouthakis, 1989) that

( 54 ) ∞==
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where the supremum is attained for
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This suggests that a negative flowrate F(t) would result in instability.  However, since the flowrate is always
nonnegative, this instability warning is of little value.  In fact, computation of the gain of S over the set

})({ˆ min ∞<≤= tuuuW , where minuFs ≤− , yields

( 56 ) ∞<
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implying that the system is indeed FG stable for all physically meaningful inputs, as one would intuitively expect.
Example 5 – Stability dependence on the set of inputs
Consider a continuous stirred-tank reactor (CSTR) modeled by the following equations, in continuous time:
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where
F = volumetric feed flowrate
V = CSTR volume = 1.36 m3

CA = concentration of A in CSTR
CAi = concentration of A in inlet stream = 8,008 mol/m3

α = kinetic constant = 7.08×107 1/hr
E/R = activation energy/gas constant = 8,375 K
T = temperature in CSTR
Ti = inlet temperature = 373.3 K
∆HR = heat of reaction = -69,775 j/mol
ρ = density of liquid in CSTR = 800.8 kg/m3

cp = specific heat of liquid in CSTR = 3,140 j/kg-K
Q = heat removal rate = 1.055×108 j/hr

The reactor has three steady states.  Eigenvalue analysis of the linearized system around the steady state
corresponding to

( 58 )
3

3
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=

reveals that the above steady-state is locally stable with respect to initial conditions.  Consequently, it is input-output
stable for inputs of small enough magnitude.  To determine what “small enough”  means in the previous sentence
requires careful analysis.  For example, single pulse changes in u of magnitude sF5.0−  or sF5.0+  do not reveal any

instabilities (the CSTR returns to the original steady state, Figure 6 and Figure 7), but successive pulse changes of
magnitudes sF5.0−  and then sF5.0+  drive the CSTR to instability ( ∞=

22,i
S ), as Figure 8 demonstrates.

Therefore, this CSTR is not input-output stable for u bounded in the interval ]5.0,5.0[ ss FF− .
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Figure 7.  Response of CSTR to the flowrate pulse 
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Choi and Manousiouthakis (1997) recently introduced the concept of finite-gain/initial conditions stability, to
combine the insights provided by each of the above two kinds of stability:
Definition 9 – Finite-gain/initial conditions stability

A system uxu SllS n
q

m
p =→ ÍÎÎ Ï , is finite-gain stable over the set U for initial conditions s[0] in the set S if the

following inequality holds:

( 59 ) ∞<
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u

x

Ss
Uu
]0[

sup

The advantage of the above definition is that it gives a complete characterization of the stability behavior of a
system.  Its disadvantage is that the computation of the left-hand side in eqn. ( 59 ) is not trivial.

3.2 Is stability important?
As the above section 3.1 emphasized, stability is a fundamental property of a dynamic system that summarizes the
long-term behavior of that system.  There are two important implications of this statement:

(a) MPC controllers should result in closed-loops that are stable.  Therefore, if an optimal MPC system is to be
designed, only candidates from a set of stabilizing MPC controllers should be considered in the design.
Ideally, the set of all stabilizing MPC controllers should be known.  That set is difficult to determine for
constrained MPC, given the richness allowed in the structure of constrained MPC.  However, one can find
subsets of the set of all stabilizing MPC controllers with constraints.  Selecting MPC controllers from such
a subset can have significant implications on closed-loop performance, as section 5.3 demonstrates.  For
unconstrained MPC controllers with linear models, which are equivalent to linear, time-invariant
controllers as shown in section 2.3, the set of all controllers that can stabilize a given linear plant can be
explicitly parametrized in terms of a single stable transfer function through the celebrated Youla-
parametrization (Vidyasagar, 1985).  For stable plants, the Youla-parametrization is the same as the internal
model control (IMC) structure (Morari and Zafiriou, 1989).

(b) The above discussion in section 3.1 is most relevant for continuous processes, for which operating time can
theoretically extend to infinity.  For batch processes, operating time is finite, consequently stability should
be examined in a different framework.  For example, instability that would generate signals that grow
without bounds might not be detrimental, provided that the rate of growth is very small with respect to the
batch cycle time.

4 The behavior of MPC systems
The examples that follow attempt to expose some MPC pitfalls.  All examples are intentionally kept as simple as
possible, to easily expose the theoretical issues associated with each one of them.  Because of that simplicity, the
issues highlighted in each example could be easily addressed by intuitive design (tuning) improvements of the
corresponding MPC systems.  Our purpose, however, is not to use these examples to test the ultimate capabilities of
MPC.  Large multivariable systems, for example, would be better suited for that purpose.  Our intention is to help
the reader understand the theoretical issues associated with these examples by easily following some of the
associated calculations.

4.1 Feasibility of on-line optimization
Because MPC requires the solution of an optimization problem at each time step, the feasibility of that problem must
be ensured.  For example, the optimization problem posed in equations ( 14 ) to ( 17 ) may be infeasible.  If the on-
line optimization problem is not feasible, then some constraints would have to be relaxed.  Finding what constraints
to relax in order to get a feasible problem with optimal deterioration of the objective function is extremely difficult,
since it is an np-hard problem.  A possible (and partial) remedy to the problem is to consider constraint softening
variables ε on process output constraints, e.g.

( 60 ) piykikyy ,,1,][ minmax Ð=ε−≥+≥ε+
and include a penalty term such as ε2 in the objective function.  As we will discuss in section, feasibility, in addition
to being a practical consideration, is also important for closed-loop stability of MPC.  In fact, algorithms have been
developed by Mayne and co-workers, which merely require the existence of a feasible instead of optimal solution of
the on-line optimization problem, to guarantee closed-loop stability of an MPC system.
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4.2 Nonminimum phase and short horizons
Example 6 – Closed-loop stability for  a nonminimum-phase process
Consider a nonminimum-phase process described by the equation
( 61 ) ][]4[]3[]2[]1[][ 4321 kdkuhkuhkuhkuhky +−+−+−+−=
with 01 =h  (dead-time), 12 −=h  (inverse response), 23 =h , 04 =h  (Genceli and Nikolaou, 1993;  Genceli,

1993).  Assume no modeling uncertainty.  For that process consider the constrained MPC on-line optimization

( 62 ) ∑∑
==−+
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kpkukku
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01]|1[,],|[
][][minÑ

with , 3=p  and 1=m , subject to the constraints

maxmin 2.0][2.0 ukikuu =≤+≤−=
The above optimization can be trivially transformed to linear programming.  A step disturbance equal to –0.05 and a
step setpoint change equal to 0.05 enter the closed loop at time k=0.  For move suppression coefficient values

5.010 <= rr  the resulting closed-loop response is shown in Figure 9.
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Figure 9.  Closed-loop response for  the process of Example 6, with 5.010 <= rr

The closed-loop is clearly unstable.  If the move suppression coefficients take values 5.010 ≥= rr  (to penalize the

move suppression coefficients even more) the closed loop remains unstable, as shown in the following Figure.
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Figure 10.  Closed-loop response for  the process of Example 6, with 5.010 ≥= rr
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The instability is due to the non-minimum phase characteristics of the process.  While a longer optimization horizon
length, p, might easily solve the problem, a simple remedy can also be obtained by considering the following end-
constraint on u in the on-line optimization:

( 63 )
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1
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where gj are model estimates of the coefficients hj.  The meaning of the above eqn. ( 63 ) is that the value of the
process input u at the end of its horizon should correspond to a steady state value that would produce zero steady
state offset
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for the process model output ][ kky ∞+ .  The closed-loop response for move suppression coefficient values

7.210 == rr  is shown in Figure 11.  It turns out that these values for the move suppression coefficients are

sufficient for robust stability of the closed loop, when the modeling errors e1, e2, e3, e4 for the coefficients h1, h2, h3,
h4 are bounded as 12.0|||| 111 ≤−= ghe , 10.0|||| 222 ≤−= ghe , 08.0|||| 333 ≤−= ghe , 05.0|||| 444 ≤−= ghe

(Genceli and Nikolaou, 1993).  The key to achieving stability was the end-constraint, eqn. ( 63 ).  It turns out that
inclusion of an end-constraint of the type
( 64 ) 0x =][ p

in the on-line optimization performed by MPC is a convenient way to generate a controller structure for which
stability can be easily shown (section 5.1).
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Figure 11.  Closed-loop response for  the process of Example 6, with 7.210 == rr , end-condition enforced.

4.3 Integrators and Unstable Units
With the dimension of multivariable MPC systems ever increasing, the probability of dealing with a MIMO process
that contains an integrator or an unstable unit also increases.  For such units the use of FIR models, as used by
certain traditional commercial algorithms such as dynamic matrix control (DMC), is not feasible.  Integrators or
unstable units raise no problems if state-space or DARMAX model MPC formulations are used.  As we will discuss
below, theory developed for MPC with state-space or DARMAX models encompasses all linear, time-invariant,
lumped-parameter systems and consequently has broader applicability.

In contrast to constrained MPC of stable plants, constrained MPC of unstable plants has the complication
that the tightness of constraints, the magnitude and pattern of external signals, and the initial conditions all affect the
stability of the closed loop.  The following simple example illustrates what may happen with a simple unstable
system.
Example 7 – Stability regions
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Consider the unstable plant 
3
1)( −

+−=
s
ssP  controlled by the P controller 2)( =sC .  The controller output is

constrained between –1 and 1.  A disturbance, d, is added to the controller output, to create the final input to the
plant.  The following figures show responses to three different disturbances.
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Figure 12.  Plant response to step disturbance 5.0=d  at 1=t  ( 10=k ) for  Example 7.
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Figure 13.  Plant response to step disturbance 26.0=d  at 1=t  ( 10=k ) for  Example 7.

The response in Figure 12, resulting from the step disturbance 5.0=d , clearly corresponds to unstable closed-loop
behavior.  The response in Figure 13, resulting from a smaller step disturbance 26.0=d , shows a bounded plant
output.  However, one cannot say that disturbances of amplitude 0.26 or smaller result in stable closed-loop
behavior.  Indeed, as Figure 15 shows, the plant response to the pulse disturbance of amplitude 0.26, shown in
Figure 14, is clearly unstable.



– 23 –

0 50 100 150 200 250 300 350
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

d

sampling instant, k
Figure 14. Pulse disturbance for  Example 7.
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Figure 15.  Output for  pulse disturbance in Example 7.

The above simple example makes it clear that characterization of external inputs that do not destabilize a
closed loop is by no means trivial, when the plant is unstable.  Similar comments can be made about dependence of
stability on the initial state of the system.  For the case of a linear, unstable system with bounded inputs and without
external disturbances, Zheng and Morari (1995) have developed an algorithm that can determine the domain of
attraction for the initial state of the system.

4.4 Nonlinearity
MPC systems that employ nonlinear models may exhibit increased complexity due to two main factors:

(a) Nonlinear programming, required for the solution of the MPC on-line optimization problem, does not
produce exact solutions but rather solutions that are optimal within a certain prespecified precision
tolerance, or even locally optimal, if the optimization problem is nonconvex.
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(b) Even if the global optimum of the on-line optimization problem is assumed to be exactly reached, MPC
behavior may show patterns that would not be intuitively expected.  For instance, Rawlings et al. (1994)
discuss two simple examples of MPC applied to nonlinear systems, where the state feedback law turns out
to be a discontinuous function of the state, either because of stability requirements, or due to the structure
of MPC.  As a result, standard stability results that rely on continuity of the feedback law cannot be
employed.

Example 8 – A nonlinear  process that cannot be stabilized by a continuous feedback law
In the first example, the following two-state, one-input system is considered:

( 65 )

given   ]0[],0[

][][]1[

][][]1[

21

3
22

11

xx

kukxkx

kukxkx

+=+

+=+

Meadows et al. (1995) showed that the following MPC nonlinear program, corresponding to a moving horizon of
length 3, results in a closed loop that is globally asymptotically stable around the equilibrium point )0,0(=ex .

(Recall that an equilibrium point xe is globally asymptotically stable if ek xx →][ as ∞→k  for any initial point

x[0].)

( 66 ) ( )∑
=++

+++++
2

0

22
2

2
1

]2[],1[],[
][][][min

ikkukkukku
kikukikxkikx

subject to the terminal constraint
( 67 ) 0]3[]3[ 21 =+=+ kkxkkx

Meadows et al. (1995) also showed that horizons of length less than 3 cannot globally asymptotically stabilize this
system, while horizons of length larger than 3 will result in less aggressive control action.  The control law u(x) for
the above horizon of length 3 turns out to be continuous at the origin, but has discontinuity points away from the
origin.  In fact, no continuous state feedback law can stabilize the system of eqns. ( 65 ).  To show that, following
Meadows et al. (1995), first note that any stabilizing control law must allow both positive and negative input values
for x.  If the control is strictly positive, trajectories originating in the first quadrant move away from the origin under
positive control action. If the control is strictly negative, trajectories originating in the third quadrant also move
away from the origin.  Yet u(x) cannot be identically zero for any nonzero x.  If it were, then this x would be a fixed
point of the dynamic system and trajectories containing this x would not converge to the origin.  We have the
situation in which the feedback control law must assume both negative and positive values away from the origin, yet
must be zero nowhere away from the origin.  Therefore, the control law must be discontinuous.
Example 9 – A finite prediction hor izon may not be a good approximation of an infinite one for  nonlinear

processes
In the second example, consider the following single-state, single-input system:

( 68 ) 22222 )][][(][][]1[ kukxkukxkx +−+=+
with the MPC controller

( 69 ) ( )∑
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+++
1
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22

]1[],[
][][min

ikkukku
kikukikx

subject to the terminal constraint
( 70 ) 0]2[ =+ kkx

which is feasible if the initial state is restricted such as 1][ ≤kx .  The control law resulting from the above

optimization, eqns. ( 69 ) and ( 70 ), is

( 71 )
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resulting in an optimal cost

( 72 )
î



≤<
=

=
1||01

00
)(

x

x
xJopt .

Both u(x) and Jopt(x) are discontinuous at the origin.  Therefore, stability theorems that rely on continuity cannot be
used.  Yet, it is simple to check by inspection that the feedback law of eqn. ( 71 ) (with either sign chosen) is
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asymptotically stabilizing.  However, the continuous feedback control law u(x) = 0, resulting in the closed-loop
system

( 73 ) 42 ][][]1[ kxkxkx −=+ ,
is asymptotically stabilizing for initial conditions in [-1, 1].  The actual closed-loop cost incurred using this feedback

control law is ∑∞
=0

2][
k

kx .

It turns out, (Rawlings, 1994) that for initial conditions in [-1, 1], the closed-loop cost of the zero control
action is always less than that for the optimal MPC controller with fixed horizon.  Since the actual incurred cost is
calculated over an infinite horizon, it is reasonable to ask whether the minimum cost of the finite horizon MPC
problem would approach the cost incurred using the zero controller as the horizon length tends to infinity.  The
answer is negative.  In the finite horizon MPC on-line optimization problem we require that the terminal constraint
x[p] = 0 be satisfied, where p is the horizon length.  Because of the structure of the problem, the closed-loop MPC
cost is 1 for all horizon lengths.  This examples demonstrates that the intuitive idea of using the terminal constraint
x[p] = 0 and a large value of p in order to approximate the desired infinite horizon behavior, an idea that works for
linear systems, does not work in general for nonlinear systems.

4.5 Model uncertainty
Example 10 – Ensur ing robust stability of a heavy oil fractionator
Vuthandam et al. (1995) considered the top 2×2 subsystem of the heavy oil fractionator modeled in the Shell
Standard Process Control Problem (Prett and Garcia, 1988) as
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Discretization for a sampling period of 4 minutes yields a corresponding discrete-time model that is used in the
following MPC on-line objective function
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with the constraints
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( 77 ) 021 == SPSP yy

and step disturbances

( 78 )
5.0

2.1

2

1

−=
=

d

d

In addition to the above constraints, the end-constraint

( 79 ) ])[(][ 1 kkkimk sp dyGu −=++ − ,   0≥i

is considered, where G is the steady-state gain of the process.  Simulation of the above system verified the robust
stability analysis of the above authors, as shown in the following table and corresponding figures.
End-condition,

eqn. ( 79 )
Input move suppression coefficients Closed-loop behavior
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Used
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Figure 16.  Closed-loop response for  Example 10, Case 1.
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Figure 17.  Closed-loop response for  Example 10, Case 2.



– 27 –

   

-1

-0.5

0

0.5

1

1.5

0 50 100 150 200 250 300 350

time, k

y1

y2

Figure 18.  Closed-loop response for  Example 10, Case 3.

4.6 Fragility
Because MPC relies on the numerical solution of an on-line optimization problem, it may find a solution to that
problem which is not exactly equal to the expected theoretical solution.  Is closed-loop stability going to be
adversely affected by that discrepancy between the theoretically expected MPC behavior and the actual (numerical)
MPC behavior?  An affirmative answer was given by Keel and Bhattacharya (1997), who demonstrated, by
example, that there are linear time-invariant stabilizing controllers for which extremely small variations of their
coefficients may render the controllers destabilizing, even though the controllers may nominally satisfy optimality
criteria such as H2, H∞, l1, or µ, as well as robustness criteria.  Borrowing from the above authors, consider the
following example:
Example 11 – Sensitivity of closed-loop stability to small var iations in controller  parameters
For the stable transfer function
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is designed by minimizing a weighted H2 norm of the closed-loop transfer function.  The values of the controller
parameters are given in Table 1.

Table 1
Parameter Value Parameter Value
q6 1.0002 p6 0.0001
q5 3.0406 p5 1.0205
q4 8.1210 p4 2.1007
q3 13.2010 p3 5.1403
q2 15.2004 p2 6.06
q1 12.08 p1 2.0
q0 4.0
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The poles of the resulting closed loop are well in the left-half plane, as supported by the Nyquist plot of P(s)C(s)
shown in Figure 19.  Therefore the nominal closed-loop is stable.  Yet a small change p∆  in the nominal controller

parameters p, such that

( 82 ) 6

2

2 1074.3 −×=
∆

p

p

can destabilize the closed loop.  For example, if
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Figure 19.  Nyquist plot of P(s)C(s) for  Example 11.

The above problem of extreme sensitivity of closed-loop stability to small variations in controller
parameters has been termed fragility.  Given that unconstrained MPC with quadratic cost and linear model is
equivalent to a linear time-invariant controller, as demonstrated in section 2.3, it is clear that similar fragility
problems may appear with MPC as well.  Fragility might have a more realistic probability of being an instability
threat in constrained MPC, where, as discussed in more detail in Section 4.6, the results of on-line optimization may
not be exact, such as in the case of nonlinear programming with multiple optima or with equality constraints.
Fragility problems may even emerge in computer implementation of control algorithms where floating-point
arithmetic introduces a truncation (round-off) error (Williamson, 1991).

Of course, MPC controllers would have to be robust with respect to plant uncertainty, which is usually
orders of magnitude larger than controller uncertainty.  From that viewpoint, controller fragility would be an issue of
practical significance if small controller uncertainty could cause instability for plants close to or at the boundary of
the set of uncertain plants considered in controller design.

4.7 Constraints
Zafiriou (1991) used a number of examples to demonstrate that the presence of constraints can have a dramatic and
often counter-intuitive effect on MPC stability properties and can render tuning rules developed for stability or
robustness of unconstrained MPC incorrect.  The following examples show how the addition of constraints to a
robustly stable unconstrained MPC system can lead to instabilities.
Example 12
Consider the process
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A sampling period of 0.1 is used.  The following MPC system is used to control the process:
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( 87 ) 1]1[1 ≤+≤− kky

Two points are to be made:

(a) While for step disturbances 70.1≤d  the output y returns to the setpoint 0=spy , for step disturbances

75.1≥d  the output oscillates with amplitude that grows without bound.  Therefore, unlike in the case of linear
systems, the stability characteristics of the above constrained MPC system depend on the magnitude of external
disturbances.

(b) Perhaps counterintuitively, relaxing the controller by removing the output constraint, eqn. ( 87 ), can be shown
to result in a linear time-invariant controller that robustly stabilizes the closed loop for disturbances of any
amplitude.

Example 13
Consider the process

( 88 )
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A sampling period of 0.3 and an FIR model with n=50 coefficients are used.  The following MPC system is used to
control the process:

( 89 ) ∑
=−+∆∆

+
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ikmkukku
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]1[,],[
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( 90 ) 3.0]2[3.0 ≤+≤− kky

If the output constraint, eqn. ( 4 ) were not present, then the choice 1=m  and a sufficiently large mnp +≥  would

stabilize the closed loop, in the absence of process/model mismatch.  However, the presence of the output constraint
destabilizes the closed loop.  As ∞→p , then the closed loop largest root approaches 1.45, for m=1, and 2.63, for

m=2.  Again, the presence of output constraints destabilizes the closed loop instead of tightening control.

5 A theory for MPC with predictable properties

5.1 Stability
Because no equivalent linear time-invariant controller exists for a constrained MPC controller, determining the
stability of a constrained MPC closed-loop system cannot rely on methods suitable only for linear systems, such as
determination of the poles of the closed-loop transfer matrix.  Recent developments have shed light on the stability
of constrained MPC.  The seeds of proving stability for constrained MPC were already planted by Economou (1985)
who postulated, before his life reached a tragic end, that closed-loop stability for constrained MPC could be
established using the contraction mapping theorem.  Mayne and Michalska (1991) and Rawlings and Muske (1993),
through seminal papers, developed working frameworks for establishing closed-loop stability of continuous-time
and discrete-time constrained MPC systems, respectively.  These works provided the right tools for the study of a
long considered difficult control problem.  Following below is a discussion of pertinent ideas.

5.1.1 MPC with linear model – A prototypical stability proof
Consider the following state-space description of a linear, time-invariant (not necessarily stable) process
( 91 ) ][][]1[ kkk BuAxx +=+

where xnℜ∈x , unℜ∈u .  We assume perfect knowledge of the matrices A and B, full state information x[k], and
absence of disturbances.  The MPC objective at time k is
( 92 ) ][min

]|1[,],|[
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kpkkk −+uu Ù
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W is a positive definite matrix and R is a positive semi-definite matrix.  State and input constraints are
( 94 ) piikkikik ,,1],1[]1[]1[ Ú=−+≤−+−+ guG
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( 95 ) piikkikik ,,1],[][][ Û=+≤++ hxH

The above constraints are assumed to define non-empty (convex) regions containing the point (0, 0).
Closed-loop MPC stability can be established using the following Lyapunov argument (Rawlings et al.,

1994).  Assume that ]1[ −+ ikG , ]1[ −+ ikg , ][ ik +H , and ][ ik +h  are independent of k and i.  Consider a solution

( 96 ) { }]1[,],[|1
|

kpkkk optopt
kpk

kkopt −+=−+ uuU Ü
to eqn. ( 92 ) at time k, and assume that p is large enough so that 0x =][ p .  Consider the following candidate for

control input at time k+1:

( 97 ) { }0uuU ],1[,],1[1|
1|1 kpkkk optopt
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++ Ý .
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++

++
kpk

kkU  is feasible at time k+1, because it contains inputs u that satisfied the same constraints at time k.  The above

feasible input results in a value of the objective function J[k+1] that satisfies

( 98 ) ][][][][][]1[ kkkkkJkJ TT
opt RuuWxx −−=+

Because of optimality, the above equation yields
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where the last inequality results from the positive semi-definiteness of W and positive definiteness of R.  Therefore,

the sequence ∞
= 0

]}[{ kkkJ  is non-increasing.  It is also bounded from below by 0.  Consequently, the sequence

∞
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and closed-loop stability is proven.

5.1.2 MPC with nonlinear model
The Lyapunov-like stability proof presented in section 5.1.1 can be extended to nonlinear systems.  Because
nonlinear systems are defined by what they are not (namely linear), the framework of the ensuing proof must be
precisely defined.  Borrowing from Rawlings (1994) and Meadows et al. (1995), we consider dynamical systems of
the form
( 100 ) ])[],[(]1[ kkk uxfx =+ .

where nmn ℜ→ℜ×ℜ:f  is continuous and 000f =),( .  The state x is assumed to be measurable.  The MPC on-

line optimization problem becomes
( 101 ) ][min

]|1[,],|[
kI

kpkkk −+uu Þ
where
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kikkikLkI ux

subject to eqn. ( 101 ) and the state, input, and terminal constraints
( 103 ) ][][ ikXkik +∈+x ,  1,,0 −= pi ß
( 104 ) ][][ ikUkik +∈+u ,  1,,0 −= pi à .

The function ℜ→ℜ×ℜ mnL :  that appears in eqn. ( 102 ) is assumed to satisfy the following properties:
( 105 ) 0)( =0,0L
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( 106 ) There exists a nondecreasing function ),0[),0[: ∞→∞γ  such that 0)0( =γ  and ),()(0 uxux, L≤γ<  for

all ( )00ux ,),( ≠ .

These lead to the following additional properties of L:
( 107 ) ),(),(0),( 00uxux ≠∀>L

( 108 ) ( )00uxux ,),(0),( =⇔=L

( 109 ) ( )00uxux ,),(0),( →⇒→L

Notice that the function J in eqn. ( 93 ) satisfies all of the above conditions.
As in the linear case, a proof for closed-loop stability can be constructed, if it can be guaranteed that

( 110 ) 0x =+ ][ kpk .

Eqn. ( 110 ) can be satisfied if the moving horizon length, p, is chosen to be “ large enough” , or if the constraint in
eqn. ( 110 ) is directly incorporated in the on-line optimization problem.  In either case, a closed-loop stability proof
can be constructed as follows.

5.1.2.1 A prototypical stability proof for MPC with nonlinear model
As in the linear case, we assume perfect knowledge of f, full state information x[k], and absence of disturbances.
The constraints are assumed to define non-empty (convex) regions containing the point (0, 0).  Assume also that
X[k+i] and U[k+i] are independent of k and i.  Assume that there exists a solution

( 111 ) { }]1[,],[]|1
|

kpkkk optopt
kpk

kkopt −+=−+ uuU á
to eqn. ( 101 ) at time .k, corresponding to 0x =][ p .  Consider the following candidate for control input at time k+1:
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kkU  is feasible at time k+1, because it contains inputs u that satisfied the same constraints at time k, the point

(0, 0) has been assumed to be feasible, and f is assumed to be known perfectly.  The above feasible input results in a
value of the objective function I[k+1] that satisfies
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where the last inequality results from the positive semi-definiteness of L.  Therefore, the sequence ∞
= 0

]}[{ kkkI  is

non-increasing.  It is also bounded from below by 0.  Consequently, the sequence ∞
= 0

]}[{ kkkI  converges to a limit b.

To show that  b = 0, rearrange eqn. ( 113 ), to get
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⇒=+−≤≤
∞→∞→

0])1[][(lim])[],[(lim0 kIkIkkL optopt
kk

ux

⇒=
∞→

0])[],[(lim kkL
k

ux

)(])[],[(lim 0,0ux =
∞→

kk
k

where the last equality follows from property ( 109 ) of the function L.  This completes the proof of closed-loop
stability.

5.1.3 The stability proof and MPC practice
The above prototypical stability proofs are relatively simple. They rely on the inequality
( 114 ) ( ) ]1[][])[],[(0 +−≤≤ kIkIkkL optoptux

Proving the above inequality hinges on a number of assumptions, of which the following are important:
 i. The on-line optimization problem, eqns. ( 92 ) or ( 101 ), is feasible.
 ii. The state can be steered to the setpoint in at most p steps, i.e. 0x =][ p .

 iii. The controlled process model A and B in eqn. ( 91 ) or f in eqn. ( 100 ) is perfect.
 iv. There are no external disturbances.
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 v. The state x is measurable.
 vi. The input and state constraints, eqns. ( 94 ) and ( 95 ) or ( 103 ) and ( 104 ) are time-independent.
 vii. The global optimum of the on-line optimization problem, including the terminal constraint 0x =+ ][ kpk  can

be computed exactly.
For stable processes, MPC practitioners have traditionally ensured that the above assumptions i and ii and are
satisfied by

(a) selecting large enough p and
(b) performing the optimization with respect to u[k|k],…, u[k+m|k], where m<<p.

Rawlings and Muske (1993) have shown that the above idea can be extended to unstable processes.  In addition to
guaranteeing stability, their approach provides a computationally efficient way for on-line implementation.  Their
idea is to start with a finite control (decision) horizon but an infinite prediction (objective function) horizon, i.e.,

∞<m  and ∞=p , and then use the principle of optimality and results from optimal control theory to substitute the

infinite prediction horizon objective by a finite prediction horizon objective plus a terminal penalty term of the form

( 115 ) ][][ pp T Pxx
corresponding to the optimal value of the truncated part of the original objective function.  Chen and Allgöwer
(1996) have presented an extension of the above idea to MPC with nonlinear model and input constraints.  They
compute the terminal penalty term off-line as the solution of an appropriate Lyapunov equation.  Genceli and
Nikolaou (1995) have shown how to ensure feasibility and subsequently ensure robust stability for nonlinear MPC
with Volterra models.

Selecting large enough p is not the only way to guarantee the above two assumptions i and ii.  One could
directly include an end-constraint 0x =][ p  in the on-line optimization problem, an idea proposed by several

investigators (Kleinman, 1970;  Thomas, 1975;  Keerthi and Gilbert, 1988;  Mayne and Michalska, 1990).  This
constraint does not pose any serious computational challenges in on-line implementation.  Other options are also
possible, based, for example, on constraining x(p) to belong to a small neighborhood of the set point (Mayne, 1996)
or on state contraction arguments (Morari and de Oliveira, 1997;  Mayne, 1997).

Unstable processes pose the additional challenge that stabilization is possible only if the state x(k) lies in a
certain domain, so that, even though the input may be constrained (eqn.( 5 )) enough control action can be available.
If the state is not in the stabilizability domain, then nothing can be done to steer the state to the setpoint.

The feasibility of state constraints is a common issue (see, e.g., Theorem 1 in Rawlings et al., 1994).  For
example, when simple output constraints have to be satisfied, such as in eqn.( 7 ), then it might occur that not
enough control action is available, because of constraints such as in eqn. ( 5 ).  If such infeasibility is detected, one
can use additional relaxation variables to modify output constraints as
( 116 ) piykikyy ,,1,][ minmax ã=ε−≥+≥ε+

and add a term 2εq  to the objective function in eqn. ( 4 ).

The stability proof can be extended to handle bounded external disturbances (to address assumption iv) by
additional “book-keeping” , although the results may be conservative.  Alternatively, one may introduce an integrator
in the process output and show stability for an integrating system without disturbance3.

The above issues and their implications for improving MPC are discussed in Section 6.

5.2 Robust stability and fragility of constrained MPC
To show inequality ( 114 ), the preceding assumptions i through vii were made.  When assumptions i, iv, and v are
not satisfied, robustness issues arise, because the process behaves differently than assumed by the controller.  When
assumption vii is not satisfied, then fragility issues arise, because the controller behaves differently than designed.  It
should be mentioned that the issue of fragility is not confined to constrained MPC systems.  Keel and Bhattacharyya
(1997) recently showed that even in linear time-invariant control systems, there are controllers for which extremely
small deviations of the controller parameter values from their designed values can result in instability (see section
4.6).

                                                          

3 For example, the FIR model of eqn. ( 10 ) can be substituted by ∑
=

−+−=
n

j
i jkuhkyky

1
][]1[][ , thereby

eliminating the step disturbance d.
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5.2.1 Robust stability
To ensure robustness of stability in the presence of model uncertainty, one has to make sure that the inequality ( 114
) is satisfied, even though the matrices A and B in eqn. ( 91 ) or the function f in eqn. ( 100 ) are not perfectly
known.  The inequality  ( 114 ) also has to be satisfied when external disturbances enter the system.  Two
approaches have appeared in literature.

(a) Choose the parameters of the standard MPC on-line objective function I[k] (e.g. the matrices Q and R in
J[k] for the linear case) in such a way, that ]1[][0 +−≤ kIkI optopt .  In other words, robustness is attempted

through better tuning of MPC, with minor modifications of the MPC structure.
(b) Modify the on-line MPC optimization problem, by adding constraints that help stabilize the closed-loop

system, without critical dependence on tuning.  For example, add to the on-line MPC optimization problem
an additional constraint of the type

( 117 ) ][]1[0 kIkI opt −−≤ .

The advantage of the first approach is that the form of the standard MPC optimization problem is retained.
Its disadvantage is that the on-line objective may become unrealistically conservative, depending on the magnitude
of process model uncertainty.  The advantage of the second approach is that the on-line objective may be formulated
in a way that reflects the true control objective, without regard to stability, because the latter is enforced by the
constraint of eqn. ( 117 ).  Its disadvantage is that the MPC on-line optimization problem may become complicated.

5.2.1.1 MPC tuning for robust stability
Consider the following MPC on-line optimization problem for an open-loop stable, multi-input-multi-output
(MIMO) system, modeled by a finite-impulse-response (FIR) model:
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where nI is the number of process inputs;  no is the number of process outputs;  nw is the number of inputs, is the
number of time steps over which output constraints are enforced;  G[j] are matrices of the FIR coefficients of the
process model.  The real process output is assumed to be
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Notice that the model kernel N
j

j
1

][ }{ =G  is different from the true kernel N
j

j
1

][ }{ =H , with the modeling error bounded

as
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External disturbances are assumed to be bounded as
( 128 ) maxmin ][ ddd ≤≤ k

and
( 129 ) maxmax ][ ddd ∆≤∆≤∆− k

where

( 130 )
�



>=
≤≥

∆
Mk

Mk

0

,0
maxd

For the above MPC system, eqns. ( 118 ) through ( 125 ), Vuthandam et al. (1995) developed sufficient
conditions for robust stability with zero offset.  These conditions can be used directly for calculation of minimum
values for the prediction and control horizon lengths, p and m, respectively, as well as for the move suppression
coefficients r ji, which are not equal over the finite control horizon.  Since the robust stability conditions are
sufficient, they are conservative, particularly for very large modeling uncertainty bounds.

The proof relies on selecting p, m, and r ji to satisfy the inequality
( 131 ) ]1[][0 +′−′≤ kJkJ optopt

with
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where the function f[k] is an auxiliary function that helps prove stability, as required by eqn. ( 136 ).  Satisfaction of

inequality ( 131 ) implies that the sequence ∞
=′

0
]}[{ kkopt kJ  is convergent.  Then, the end-condition, eqn. ( 125 ) is

used to show that the sequence ∞
=′

0
]}[{ kkopt kJ  converges to 0.  The proof starts with the inequality

( 133 ) ]1[][]1[][]1[]1[0 +′−′≤+′−′⇔+′−+′≤ kJkJkJkJkJkJ optoptoptopt

where J’ [k+1] corresponds to a set of input values ]}11[],1[,],11[{ +++∆++∆++∆ kmkkmkkk uuu ê to be

selected such that
( 134 ) ]1[][0 +′−′≤ kJkJopt

For the feasible input set
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inequality ( 134 ) becomes
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All terms in the above inequality, after lengthy manipulations and strengthening of inequalities, can be expressed in
terms of inputs ∆u squared.  The resulting expression is of the form
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where the positive constants ai,j depend on the model, uncertainty bounds and input bounds.  For that inequality to
be true it is sufficient to have
( 138 ) jijiji arr ,,,1 +≤−

with
( 139 ) 0, =− jNr

Note that the above inequality in eqn. ( 138 ) implies that weights of the input move suppression term containing ∆u
gradually increase.  Details can be found in Vuthandam et al. (1995) and Genceli (1993).  A similar result can be
found in Genceli and Nikolaou (1993) for MPC with l1-norm based on-line objective.  Variations for various MPC
formulations have also been presented.  Zheng and Morari (1993) and Lee and Yu (1997) have presented results on
MPC formulations employing on-line optimization of the form
( 140 ) ],,[maxmin pu

pu
kJ

where the vector p refers to process model parameters that are uncertain.  The idea of eqn. ( 140 ) is that the optimal
input for the worst possible process model is computed at each time step k.

5.2.1.2 Modifying the MPC algorithm for robust stability

Stability constrained MPC
Instead of tuning the MPC algorithm for robust stability, an inequality of the type ( 117 ) can be added to the on-line
optimization, to ensure that the MPC controller automatically belongs to a set of stabilizing controllers.  Through
this modification, the designer can concentrate on formulating an on-line optimization objective that reflects the
intended control objective.

Cheng and Krogh (1996) developed that idea in what they call stability constrained receding horizon
control.  While their results are for unconstrained MPC, extension of their algorithm to constrained MPC is trivial.
Following their work, consider a plant in controllable form
( 141 ) ][][]1[ kukk BAxx +=+
where
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with MM ×ℜ∈2B  invertible, Mk ℜ∈][)1(x , MNk −ℜ∈][)2(x .  The stability constrained receding horizon control

algorithm is given by the following steps.
At time step k, minimize an objective function
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over a finite horizon of length p, subject to
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Cheng and Krogh (1996) give a stability proof for the above algorithm.  They extend their algorithm to include state
estimation in Cheng and Krogh (1997).

Robust-stability-constrained MPC
Badgwell (1997) has taken the idea of stability constrained MPC a step further, by developing an MPC formulation
in which a constraint used in the on-line optimization problem guarantees robust stability of closed-loop MPC for
stable linear processes.  The trick, again, is to make sure that an inequality of the type ( 117 ) is satisfied for all
possible models that describe the controlled process behavior.  The set of these models is assumed to be known
during controller design.

Following Badgwell (1997), consider that the real process behavior is described by the stable state-space
equations
( 149 ) ][][]1[ kkk uBxAx +=+

where nk ℜ∈][x , Mk ℜ∈][u , and the process parameters ),(ˆ BA=θ  are not known exactly, but are known to

belong to a set
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of pm distinct models.  A nominal model
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is used.  For robust asymptotic stability, the state should be driven to the origin, while satisfying input, input move,
and state constraints.  No external disturbances are considered.  Under the above assumptions, the robust-stability-
constrained MPC algorithm is as follows:
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Process state prediction
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The overall optimization problem is convex and has a feasible solution, therefore it is guaranteed to have a
unique optimal solution.

The model linearity assumption, eqn ( 154 ) is not critical.  Badgwell (1997) has shown how the above
ideas can be readily extended to the case of stable nonlinear plants.

A critical assumption in the above formulation is eqn. ( 150 ), which assumes that a set of distinct models
captures modeling uncertainty.  Ideally, one would like to have a continuum of models such that the real plant is one
point in that continuum.  The continuum could be approximated by considering a very large number of distinct
models, with the obvious trade-off of increase in the dimensionality of the on-line optimization problem.

5.2.2 Fragility
The stability proofs developed in the previous sections implicitly assume that an exact solution of the MPC on-line
optimization can be obtained. However, an exact solution may not always be obtained in cases such as the
following:
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•  The on-line optimization problem is non-convex, therefore guarantees for reaching the global optimum
may be hard to obtain.

•  The on-line optimization problem is nonlinear and involves equality constraints.  Satisfaction of those
constraints is not exact, but approximate (within ε).

In the first of the above two cases, a local optimum may be obtained that is far from the global optimum.  In such
case, stability analysis based on attainment of global optimum would entirely break down.  In the second case, if the
on-line optimization problem is convex, then the solution found numerically would be close to the exact solution.  It
might then be concluded that stability analysis would be valid, at least for small error in the approximation of the
exact MPC system by the one approximately (numerically) computed on-line, provided that continuity arguments
would be valid.  It turns out, however, that this is not necessarily true.  Keel and Bhattacharyya (1997) have shown
that there exist linear time-invariant fragile controllers, i.e. such that closed-loop stability is highly sensitive to
variations in controller parameters.  In that context, the fragility properties of MPC should be rigorously examined.

A number of authors (see, for example, Scokaert et al., 1998) have developed MPC variants and
corresponding stability proofs, which overcome the above two problems by

(a) requiring that the on-line optimization reaches a feasible (sub-optimal) solution of a corresponding
problem, and/or

(b) substituting equality constraints of the type
( 161 ) 0xf =)(

by inequality constraints of the type
( 162 ) δδ ≤≤− )(xf

where δ is a vector with “small”  entries.  This ensures that the end-constraint can be satisfied exactly and,
consequently, stability analysis can be rigorously valid.

5.3 Performance and robust performance
Rigorous results for the performance of constrained MPC are lacking.  However, there is a number of propositions
on how the performance of MPC could be improved.  Such propositions rely on

(a) modifying the structure of MPC for robust performance,
(b) tuning MPC for robust performance, and
(c) developing efficient algorithms for the numerical solution of the MPC on-line optimization problem, thus

enabling the formulation of more complex and realistic on-line optimization problems that would in turn
improve performance.

The expected results of these propositions are difficult to quantify.  Nevertheless, the proposed ideas have intuitive
appeal and appear to be promising.

One proposition is to formulate MPC in the closed-loop optimal feedback form (see section 2.2).  The main
challenge of this proposition is the difficulty of solving the on-line optimization problem.  Kothare et al. (1996)
propose a formulation that reduces the on-line optimization problem to semi-definite programming, which can be
solved efficiently using interior point methods.

A second proposition relies on the idea that the on-line optimization problem is unconstrained after a
certain time-step in the finite moving horizon.  Where in the finite horizon that happens is determined by examining
whether the state has entered a certain invariant set (Mayne, 1997).  Once that happens, then closed-form
expressions can be used for the objective function from that time point to the end of the optimization horizon, p.
The idea is particularly useful for MPC with nonlinear models, for which the computational load of the on-line
optimization is substantial.  A related idea was presented by Rawlings and Muske (1993), where the on-line
optimization problem has a finite control horizon length, m, and infinite prediction horizon length, p, but the
objective function is truncated, because the result of the optimization is known after a certain time point.

Of course, as mentioned above, the mere development of more efficient optimization algorithms could
indirectly improve performance.  This could happen, for example, through the use of nonlinear instead of linear
models in on-line optimization.  As stated in the Introduction, the discussion of numerical efficiency issues is
beyond the scope of this discussion.

A third proposition has been discussed in section 5.2.1.2.  The idea is that by using a robust stability
constraint (eqns. ( 147 ) or ( 158 )), MPC will be stabilizing, therefore true performance objectives may translated
into values for the tuning parameters of MPC, without worrying about potential instabilities resulting from poor
tuning.  However, that translation of performance objectives to values for MPC tuning parameters is not always
straightforward.
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A fourth proposition was discussed by Vuthandam et al. (1995).  Their idea is that the values of the MPC
tuning parameters must satisfy robust stability requirements.  It turns out that for the robust stability requirements
developed by the above authors, performance improves as the prediction horizon length, p, increases from its
minimum value to larger values, but after a certain point performance deteriorates as p increases further.  This
happens because for very large p the input move terms in the on-line objective function must be penalized so much,
that the controller becomes very sluggish and performance suffers.  Results such as the above depend on the form of
the robust stability conditions.  If such conditions are only sufficient, as is the case with Vuthandam et al. (1995),
then performance related results may be conservative.

6 How can theory help develop better MPC systems?

6.1 Conceptual unification and clarification
The theoretical developments of the last few years have provided a solid foundation for the analysis and synthesis of
constrained MPC systems.  We now have a tool, summarized perhaps by eqn. ( 100 ), by which we can study the
stability (and other important properties) of constrained MPC and its variants in a framework that removes guessing
or ambiguity and supports rigorous statements about the expected behavior of MPC.  This framework is valuable for
both researchers and practitioners of MPC.

Of course, as with every theory, practitioners cannot rely solely on theory when they design real MPC
systems.  Real-world problems have their idiosyncratic peculiarities that may vary from case to case.  It is
imperative that the MPC designer understand the entire engineering framework within which an MPC system is
going to function.  But theory could help predict what could or would happen as a result of a specific design, thereby
steering the design towards promising directions and reducing reliance to unnecessary improvisation.  That help is
valuable for the novice and reassuring for the expert.  Theory can help augment the designer’s intuition in a very
productive way.  For example, theory could augment the value or shorten the duration of extensive simulations or
plant testing frequently performed before the final commissioning of an MPC system.  As another example, the
concept of best achievable performance by a constrained MPC system is mentioned.  Similarly to the minimum-
work concept in thermodynamics, control theory should provide achievable targets of performance and should do so
under practical conditions, e.g., in the presence of inequality constraints and model inaccuracies (Morari, 1988).
Chmielewski and Manousiouthakis (1996) have provided such a result by proving that the best performance
achievable by an MPC systems with input and state inequality constraints and objective function over an infinite
horizon can be determined by solving a single, finite dimensional, convex program of known size.

For researchers, the existence of a working theoretical framework provides impetus to attack MPC
problems with confidence that was lacking before the seminal paper by Rawlings and Muske (1993).  Despite the
avalanche of recent results capitalizing on the use of eqn. ( 100 ), there appears to be significant room for extensions,
improvements, and new ideas on MPC.  Paralleling, in a way, the introduction and wide spread of other important
frameworks in control theory (such as the universally recognized equations BuAxx +=

ü
), the MPC stability

framework could have significant implications for developments in control theory for systems different from the
chemical process systems for which MPC was first extensively implemented.

A factor whose importance for future developments cannot be overstated is the interplay between theory
and practice.  Abstraction of practical problems spurs theoretical research with industrial relevance, while consistent
and systematic exploration of theoretical ideas (a painstaking process) can yield otherwise unimaginable or
unexpected breakthroughs.

6.2 Improving MPC
The benefits of a framework for the rigorous study of MPC properties are not confined to the mere proof of MPC
properties.  More importantly, MPC theory can lead to discoveries by which MPC can be improved.  In fact, the
proofs of theoretical results frequently contain the seeds for substantial MPC improvements through new
formulations.  The existence of a theory that can be used to analyze fairly complex MPC systems allows researchers
to propose high-performance new formulations whose properties can be rigorously analyzed, at least for working
prototypes.  The algorithmic complexity of such formulations might be high, but their functionality would also be
high.  It is reassuring to know that even when the analysis is not trivial, it is definitely feasible.  In designing such
systems the designer would have theory as an invaluable aid that could augment intuition.  Moreover, theory could
also provide guidelines for the efficient use of such systems by end-users, by helping them predict what the effects
of tweaking would be.  The algorithmic complexity of on-line optimization would be hidden from the end-user.
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The ensuing discussion shows some open issues and recent new ideas in constrained MPC.  The list is
neither complete, nor time-invariant.  Some of the following ideas were directly inspired by recent MPC theory.
Others were developed rather independently, but knowledge of the fact that theory exists that can be used to study
them makes those ideas more appealing from both a theoretical and practical viewpoint.

6.2.1 Process models
Before discussing issues related to the different classes of models that may be used with MPC, we should stress that
the issue of model structure selection and model identification is at the heart of MPC.  “The greatest contribution of
Ziegler and Nichols (1942) is not the famous tuning rule but the ‘cycling’  identification technique:  they understood
precisely what minimum model information was necessary for tuning and developed a simple, reliable method for
obtaining this information.”  (Morari, 1988).

6.2.1.1 Linear vs. nonlinear models
While it is well recognized that all physical systems are, in principle, nonlinear (section 2.2), the challenge is when a
nonlinear approach is necessary for the solution of a problem.  It is then important to answer questions such as

•  When to use nonlinear models?
•  For what processes?
•  What is the structure of such models?
•  What are the properties of MPC when particular models are used?
•  How can such models be developed (from first principles and/or experimental data)?
•  What is the cost/benefit of using nonlinear models in MPC?

6.2.1.2 Input-output vs. state-space models
Traditional MPC algorithms, such as the quadratic dynamic matrix control (QDMC) algorithm (García and
Morshedi, 1986) relied on FIR models.  While FIR models have several advantageous features (section 2.2), they are
not essential for the characterization of a control algorithm as MPC.  DARMAX or state-space models have their
own relative advantages and can be used equally well in MPC.  With state-space models the issue of state estimation
naturally arises.  A new class of state estimators, introduced by Robertson et al. (1996) is discussed in the following
section.

6.2.1.3 Moving horizon-based state estimation for state-space models
If a state-space model is used by an MPC system, then the problem of state estimation arises, since, usually, not all
states can be measured.  State estimation within a stochastic system framework has a rich history, the turning point
being the celebrated work of Kalman (1960).  The Kalman filter has limitations when applied to nonlinear systems
(as the extended Kalman filter).  In addition, the Kalman filter cannot explicitly handle constraints on estimated
states.  Yet, state variables such as mass fraction or temperature are constrained, and corresponding constraints
should be satisfied by estimates of these variables.  Robertson et al. (1996) presented a new class of state estimators.
Their approach to the constrained state estimation problem relies on the moving horizon concept and on-line
optimization.  States are estimated by considering data over a finite past moving horizon and by minimizing a
square-error criterion.  In fact, the approach introduced by the above authors can estimate both states and model
parameters.

The system whose states and parameters are estimated is represented by the difference equations
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where wx,, wp, and v are white noise vectors with zero mean;  and the vector-valued vector function f represents the
solution
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of the differential equation ( ) )(][],[),(d/d tkktt ω+φ= upxx .  The least-squares estimate of the state
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and v[k] at time point k is obtained by the following constrained minimization
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subject to the equality constraints of eqn. ( 163 ) and the inequality constraints
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The matrices P, Q, and R can be interpreted as covariance matrices of corresponding random variables, for which
probability density functions are normal subject to truncation of their tail ends, dictated by the constraints of eqn. (
168 ).

The on-line optimization problem posed by eqn. ( 167 ) can be solved by nonlinear programming
algorithms, if the model in eqn. ( 163 ) is nonlinear, or by standard QP algorithms, for a linear model.  Note that the
moving horizon keeps the size of the optimization problem fixed, by discarding one old measurement for each new
one received.  The effect of the initial estimate ]1[ mkmk −+−z  becomes negligible as the horizon length m

increases.  This is the duality counterpart of the MPC moving horizon requirement that the state should reach a
desired value at the end of the moving prediction horizon.  In fact the duality between the above state estimation
approach and MPC parallels the duality between LQR and Kalman filtering.

As in the case of MPC, the performance of the proposed approach depends on the accuracy of the model
used.

6.2.1.4 MPCI:  Expanding the MPC/on-line optimization paradigm to adaptive control
To maintain the closed-loop performance of an MPC system, it may become necessary to update the process model
originally developed off-line.  Control objectives and constraints most often dictate that this update has to take effect
while the process remains under MPC (Cutler, 1995;  Qin and Badgwell, 1997).  This task is known as closed-loop
identification.  Frequently occurring scenarios where closed-loop identification is desired include the following:

•  Because of equipment wear, a modified process model is needed (without shutting down the process), for
tight future control.

•  The process has to operate in a new regime where an accurate process model is not available, yet the cost of
off-line identification experiments for the development of such a model is prohibitively high, thus making
closed-loop identification necessary.

•  Process identification is conducted off-line, but environmental, safety, and quality constraints still have to
be satisfied.

Closed-loop identification has been addressed extensively in a linear stochastic control setting (Åström and
Wittenmark, 1989).  Good discussions of early results from a stochastic control viewpoint are presented by Box
(1976) and Gustavsson et al. (1977).  Landau and Karimi (1997) provide an evaluation of recursive algorithms for
closed-loop identification.  Van den Hof and Schrama (1994), Gevers (1993), and Bayard and Mettler (1993) review
recent research on new criteria for closed-loop identification of state space or input-output models for control
purposes.

The main challenge of closed-loop identification is that feedback control leads to quiescent process
behavior and poor conditions for process identification, because the process is not excited (see, for example,
Radenkovic and Ydstie (1995) and references therein).  Traditional methods for excitation of a process, (Söderström
et al., 1975;  Fu and Sastry, 1991;  Klauw et al., 1994;  Ljung, 1987;  1993;  Schrama, 1992)  under closed-loop
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control through the addition of external dithering signals to the process input or setpoint have the weaknesses that
controller performance is adversely affected in a way that may be difficult to predict, because it depends on the very
process being identified under closed-loop control.  To remedy these problems, Genceli and Nikolaou (1996)
introduced the simultaneous Model Predictive Control and Identification (MPCI) paradigm.  MPCI relies on on-line
optimization over a finite future horizon (Figure 20).  Its main difference from standard MPC is that MPCI employs
the well known persistent excitation (PE) condition (Goodwin and Sin, 1984) to create additional constraints on the
process inputs in the following kind of on-line optimization problem, solved at each sampling instant k:

( 169 )

][minimize horizon onoptimizatiover  objective control

horizon controlover 
 values input process

subject to
( 170 ) Standard MPC constraints
( 171 ) Persistent excitation constraints on inputs over finite horizon.
The form of the PE constraint depends only on the model structure considered by the identifier and is independent of
the behavior of the identified plant.  Of course, the model structure should be “close”  (but not necessarily contain)
the real plant structure.

k+Mk

control
horizon

prediction
horizon

futurepast

setpoint

projected
output

manipulated input

Figure 20.  The MPCI moving hor izon.  Notice the unsettling projected plant output and the per iodicity of the

manipulated input.

The above formulation defines a new class of adaptive controllers.  By placing the computational load on
the computer-based controller that will perform on-line optimization, MPCI greatly simplifies the issue of closed-
loop model parameter convergence.  In addition, constraints are explicitly incorporated in the MPCI on-line
optimization.  By contrast, most of the existing adaptive control theory requires the controller designer to make
demanding assumptions that are frequently difficult to assert.

To explain MPCI quantitatively, consider, for simplicity, a single-input-single-output (SISO) process
modeled as
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where y[k] is the process output;  u[k] is the process input;  d[k] is a constant disturbance, d, plus white noise with
zero mean, w[k];

( 174 ) T
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is the parameter vector to be identified;  and

( 175 ) ]1][]1[][]1[[]1[ nkykymkukuk T −−−−=−φ þþ
Using the strong PE condition and eqns.( 169 ) to ( 171 ), one can formulate an MPCI on-line optimization problem
at time k as follows.
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subject to
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with all past values of inputs u and outputs y assumed to be known.  Note that eqn. ( 182 ) for i=1 ensures that the
closed-loop input u is persistently exciting.  In typical MPC fashion, the above optimization problem is solved at
time k, and the optimal u(k) is applied to the process.  This procedure is repeated at subsequent times k+1, k+2, etc.
For the numerical solution of the MPCI on-line optimization problem, Genceli and Nikolaou (1996) have developed
a successive semi-definite programming algorithm, with proven convergence to a local optimum.

6.2.2 Objective

6.2.2.1 Multi-scale MPC
Perhaps the most compelling impetus behind computer integration of process operations is the opportunity to closely
coordinate (integrate) a range of individual activities, in order to achieve overall corporate objectives.  In
optimization jargon, the ultimate target of computer integration is to relate dispersed individual activities to an
overall corporate objective function, that could, in turn, be used in optimal decision making over time.  So far, the
development of a manageable all-inclusive objective function has been practically beyond reach, due to the
enormous complexity of the problem.  As a remedy, hierarchical decomposition of the problem and optimal decision
making at each level are employed.  This decomposition is usually realized according to the hierarchical structure of
Figure 21 (Bassett et al., 1994).  Note that early applications of computer-based on-line optimization worked at the
top levels of the process operations hierarchy, where decisions are made less frequently that at lower levels and,
consequently, the limited speed, input/output and storage capacity of early computers was not an impediment.
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Figure 21. Process Operations Hierarchy in the chemical process industr ies.

The implicit assumption in the above decomposition is that the aggregate of the individually optimal decisions will
be close to the overall optimal decision at each point in time.  Frequently, this is not the case.  Therefore, there exists
a strong incentive to establish a framework for the formulation and solution of optimization problems that integrate
as many levels as possible above the chemical process level of the Process Operations Hierarchy (Prett and García,
1988;  Kantor et al., 1997).

Why is it not trivial to perform an integrated optimization, by merely combining the individual optimization
problems at each level of the Process Operations Hierarchy to form a single optimization problem?  There is a
number of reasons, summarized below:

•  Dimensionality – Each level in Fig. 1 is associated with a different time-scale (over which decisions are
made) that can range from split-seconds, at the Regulatory Control level, to years, at the Capacity Planning
& Design level.  The mere combination of individual level optimization problems into one big problem that
would span all time scales would render the dimensionality of the latter unmanageable.

•  Engineering/Business concepts – While engineering considerations dominate the lower levels of the
Process Operations Hierarchy, business concepts emerge at the higher levels.  Therefore, a variety of
individual objectives of different nature emerge that are not trivial to combine, either at the conceptual or
the implementation level.

•  Optimization paradigms – Various optimization paradigms have found application at each level (e.g.,
stochastic programming, mixed integer-nonlinear programming, quadratic programming, linear
programming, etc.).  However, it is not obvious what would be a promising paradigm for the overall
optimization problem.

•  Software implementation – The complexity of the integrated optimization problem is exacerbated when
implementation issues are considered.  A unifying framework is needed that will allow both software and
humans involved with various levels of the Process Operations Hierarchy to seamlessly communicate with
one another in a decision making process over time.
The above reasons that make the overall problem difficult suggest that a concerted attack is needed, from

both the engineering and business ends of the problem.  It should be stressed that, while there may be some common
mathematical tools used in both engineering and business, the bottleneck in computer integration of process
operations is not the lack of solution to a given mathematical problem, but rather the need for the formulation of a
mathematical problem that both corresponds to physical reality and is amenable to solution..

Stephanopoulos et al. (1997) have recently used a wavelet-transform based formalism to develop process
models at multiple scales and use them in MPC.  That formalism hinges on using transfer functions that localize
both time and scale, unlike standard (Laplace or z-domain) transfer functions, which localize scale (frequency), or
standard difference or differential equation models, which localize time.  Based on this formalism, the above authors
address MPC related issues such as simulation of linear systems, optimal control, state estimation, optimal fusion of
measurements, closed-loop stability, constraint satisfaction, and horizon length determination.  In relation to the last
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task, Michalska and Mayne (1993) have proposed a variable horizon algorithm for MPC with nonlinear models.
Their approach addresses the difficulty of global optimum requirements in stability proofs.  The moving horizon
length, p, is a decision variable of the on-line optimization.  Closed-loop stability is established by arguments such
as eqn. ( 113 ).

6.2.2.2 Dynamic programming (closed-loop optimal feedback)
As discussed in sections 2.2 and 5.3, the main reason for not implementing the closed-loop optimal feedback MPC
form is the difficulty of the associated optimization problem.  If inequality constraints are not present, then an
explicit closed-form controller can be determined, as Lee and Cooley (1995) have shown.  This is an area where
significant developments can be expected.

6.2.3 Constraints

6.2.3.1 MPC with end-constraint
Perhaps the most important practical outcome of our recent understanding of MPC stability properties is the
importance of the end-constraint in eqns. ( 63 ) or ( 64 ).  Such a constraint has already been incorporated in certain
commercial packages with minimal effort, either heuristically or following theoretical research publications.  MPC
theory has made it clear that including an end-constraint in MPC on-line optimization is not merely a matter of
company preference or software legacy, but rather an important step towards endowing the MPC algorithm with
improved properties.

6.2.3.2 Chance constrained MPC:  Robustness with respect to output constraint satisfaction
While MPC constraints that bound process inputs can be easily ensured to be satisfied by the actual system,
constraints on process outputs are more elusive.  That is because future process outputs within an MPC moving
horizon have to be predicted on the basis of a process model (involving the process and disturbances).  Because the
model involves uncertainty, process output predictions are also uncertain.  This uncertainty in process output
predictions may result in adverse violation of output constraints by the actual closed-loop system, even though
predicted outputs over the moving horizon might have been properly constrained.  Consequently, a method of
incorporating model uncertainty into the output constraints of the on-line optimization is needed.  This would
improve the robustness of constrained MPC.  In this paper we introduce an approach towards achieving that goal.

The proposed approach relies on formulating output constraints of the type maxmin yyy ≤≤  as chance

constraints of the type
( 185 ) { } α≥≤≤ maxminPr yyy

where Pr{ A}  is the probability of event A occurring, y is the process output bounded by ymin and ymax, and α is the
specified probability, or confidence level, that the output constraint would be satisfied.  Under the assumption that
the process output y is predicted by a linear model with normally distributed coefficients, the above chance
constraint can be reformulated as a convex, deterministic constraint on process inputs.  This new constraint can then
be readily incorporated into the standard MPC formulation.  The resulting on-line optimization problem can be
solved using reliable convex optimization algorithms such as FSQP (Lawrence et al., 1997).

7 Future needs

7.1 Is better MPC needed?
A seasoned practitioner would probably be in better position to answer the above question.  But then, a more
relevant question might be “ Is better MPC possible?”   We claim that the answer is affirmative (to both questions!).

In our discussions with MPC practitioners (certainly not with a statistically representative sample) the most
frequently expressed improvement need has been to increase the time that MPC is not in the manual mode.  The
reasons, however, why MPC is switched to “manual”  vary widely.  It appears that improvements are needed in
various areas (e.g. model development, computation, programming, communications, user interface), not just MPC
theory.  But theory, is important, as the preceding sections of this work tried to explain.  Of course, as MPC matures
to a commodity status, the particular algorithm included in a commercial MPC software package, albeit very
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important, becomes only one of the elements that can make an MPC product successful in the marketplace.  As with
many products, the cost associated with MPC development, implementation, and maintenance has to be compared
against its technical and economical benefits.  The term “better MPC” need not imply a new variant of the
traditional MPC algorithm, but rather a better way of using computers in computer-aided process operations.  For
example, section 6.2.2.1 made the case about integrating various levels of the process operations hierarchy.  While
expressing the need for such integration is relatively easy, the complexity of the problem is high enough not to allow
a simple solution as a matter of implementation.  Indeed, understanding the practical limitations as well as the
theoretical properties of a complex computer-integrated system is a formidable challenge.  Because of that, it
appears that collaboration between academic and industrial forces would be beneficial for the advancement of
computer-aided process operations technology.

7.2 Is more MPC theory needed?
Yes!  While there has been significant progress, there are still several open issues related to MPC robustness,
adaptation, nonlinearity handling, performance monitoring, model building, computation, and implementation.  In
general terms, there are two theoretical challenges associated with advancing MPC technology:

(a) Development of new classes of control strategies, and
(b) Rigorous analysis of the properties of control strategies.

Practice has shown that both challenges are important to address (Morari, 1991).  MPC is only one tool in the
broader area of computer-aided process engineering.  With computer power almost doubling every year and
widespread availability of highly interconnected computers in process plants, the long-term potential for dramatic
developments in computer-assisted process operations is enormous (Boston et al., 1993;  Ramaker et al., 1997;
Rosenzweig, 1993).  While improved MPC systems may be internally complex, the complexity of the design (e.g.
translation of qualitative engineering requirements to design parameter specifications), operation, and maintenance
of such a systems by process engineers and operators should be low, to ensure successful implementation,
(Birchfield, 1997).  “ [In the past] complexity of design and operation were traded for the simplicity of the
calculation [performed by the controller].  If control engineers had the computing devices of today when they began
to develop control theory, the evolution of control theory would probably have followed a path that simplified the
design and operation and increased the complexity of control calculations”  (Cutler, 1995).

Our opinion is that effective use of computers will rely on integration of several different entities,
performing different functions and effectively communicating with one another as well as with humans (Minsky,
1986;  Stephanopoulos and Han, 1995).  A broadening spectrum of process engineering activities will be delegated
to computers (Nikolaou and Joseph, 1995).  While MPC will remain at the core of such activity, peripheral activities
and communication around regulatory control loops (e.g. process and controller monitoring, controller adaptation,
communication among different control layers) will grow.  Although no single dominant paradigm for such
activities exists at present, it appears that MPC has a very important role to play.
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