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Abstract 

Microbial resistance to antimicrobial agents has evolved to alarming proportions.  To avert 

potentially catastrophic consequences for public health, a concerted effort is necessary.  It should 

include, among other elements, the development of methods that can optimize the clinical use of 

existing agents and accelerate the development of new ones.  For both tasks, the design of 

effective dosing regimens that suppress the emergence and proliferation of resistant microbial 

populations is crucial.  In this chapter we provide a comprehensive presentation of our recent 

theoretical and experimental work on a mathematical modeling framework that can be used to 

optimize the design of such dosing regimens.  Suggestions for future work are made. 
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1. Antimicrobial resistance and the need to optimize dosing regimens 

Microbial resistance to antimicrobial agents (“antimicrobial resistance”) has reached alarming 

proportions.  Repeated warnings are recently heard from concerned scientists about bacterial 

wars, new plagues, worldwide calamities, new apocalypses, and the risk of returning to the pre-

antibiotics era (Cohen, 1992; Neu, 1992; Gold and Moellering, 1996; Levy, 1998; Drlica, 2001; 

Landman et al., 2002; Varaldo, 2002; Levy and Marshall, 2004; Morens et al., 2004).  The 

enormity of the problem has not escaped the attention of popular press (Di Justo, 2005; 

Comarow, 2006; Silberman, 2007).  According to the U.S. Food and Drug Administration (FDA) 

“addressing the issue of antimicrobial resistance is one of the most urgent priorities in the fields 

of public health today” (Food and Drug Administration, 2006).  To avert potentially catastrophic 

consequences of antimicrobial resistance, a concerted effort on many fronts is necessary.  It 

should include, among other elements, the development of methods that can (a) optimize the 

clinical use of existing agents and (b) accelerate the development of new agents.  For both tasks, 

tools guiding the design of dosing regimens that suppress the emergence and/or proliferation of 

resistant microbial populations can make a significant impact.  Such design tools should 

maximize the killing effect of agents (or combinations of agents) on heterogeneous microbial 

populations (composed of microbial subpopulations of varying susceptibility/resistance to the 

agent(s)) while avoiding toxicity problems for host organisms.  The importance of dosing 

regimen design for clinical use has been emphasized repeatedly (Bonhoeffer et al., 1997; 

Lipsitch and Levin, 1997; Lipsitch et al., 2000; Chait et al., 2007).  Beyond the obvious 

therapeutic benefits that better design of clinical dosing regimens would have for existing 

antimicrobial agents, by prolonging their efficacy through maintenance of their microbial killing 
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effectiveness, better dosing regimen design would also make the development of new agents 

more attractive, by promising a longer effective period of use for a developed agent.  This 

promise could help make antimicrobial agent development more attractive for potential 

developers, hopefully contributing to a welcome reversal of the dire downward trend of newly 

FDA approved antimicrobial agents over the 

last two decades (Spellberg et al., 2004).  

Furthermore, tools for dosing regimen 

design would help to directly accelerate the 

antimicrobial agent development process.  

Indeed, when developing new agents, 

emphasis is traditionally placed on discovering new agent candidates.  As crucial as this step 

may be, a long (multi-year) development period ensues, until an agent is fully developed 

(Drusano et al., 2006).  During that period of development it is common that only a few dosing 

regimens are empirically tested, because of the very large number of experiments required for 

exhaustive testing (Sidebar 2). This practice 

limits our ability to realize the clinical 

potential of agents, either through premature 

abandonment of promising candidates or 

through inadvertent pursuit of dead ends.  

The critical role of selecting the right dosing 

regimen was dramatically exemplified in the 

case of daptomycin, for which selection of 

the right dosing regimen alone was the key 

Sidebar 2 – Example of dosing regimen testing 
To evaluate 6 daily doses (e.g., 0.5, 1, 2, 4, 6 
and 8 g), 4 dosing frequencies (e.g., every 6, 
8, 12 or 24 hours), 4 intravenous dosing 
administrations (e.g., intermittent infusion of 
0.5, 1, 2 hours and continuous infusion over 
24 hours) and 3 durations of treatment (e.g., 
5, 10, 14 days) would require investigation of 
288 (6×4×4×3) regimens for a single 
candidate.  Reduction by, e.g., an order of 
magnitude would have obvious implications.

Sidebar 1 – Importance of dosing regimens:  
The daptomycin case 

Daptomycin (Cubicin®, Cubist 
Pharmaceuticals) (UCSF, 2006) was initially 
under development in the 1970s with an 8-
hour dosing interval.  Its development was 
abandoned in the early 1980s due to an 
intolerable adverse effect (muscle toxicity).  
However, after understanding its exposure-
related killing properties and toxicity, 
redevelopment began in the 1990s, to finally 
reach FDA approval for clinical use in 2003.  
The key factor for FDA approval was use of a 
once-daily and weight-based dosing regimen.  
This discovery was deemed so non-obvious 
and important as to be awarded a patent 
(Oleson et al., 2005).
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differentiating factor between abandoning development in early 1980s and eventually securing 

FDA approval in 2003 (Sidebar 1). 

 The preceding discussion should make clear the value of methods that can guide the 

design of effective dosing regimens for combating antimicrobial resistance.  In this chapter we 

provide a comprehensive presentation of a recent mathematical modeling framework (Nikolaou 

and Tam, 2006; Nikolaou et al., 2007) that can be used to optimize the design of such dosing 

regimens.  Experimental in vitro validation on Pseudomonas aeruginosa, an important bacterial 

pathogen (Sidebar 3) is presented.  However, we want to emphasize at the outset that the 

proposed modeling approach could be extrapolated to a variety of antimicrobial agents (e.g., 

antibacterials, antifungals and antivirals) with different mechanisms of action, as well as to 

other pathogens (e.g., HIV, tuberculosis, anthrax and avian influenza) with different biological 

characteristics (Gumbo et al., 2004; Tam et al., 2005).  In addition, the proposed mathematical 

framework could also be extended for use in cancer chemotherapy, by accounting for 

heterogeneities of cancerous cell populations (Dua et al., 2005). 

 In the rest of this chapter we provide a background for our work, present our findings, 

and conclude with suggestions for further development. 

 

Sidebar 3 – Pseudomonas aeruginosa 
P. aeruginosa is associated with serious nosocomial infections such as pneumonia and 
sepsis.  It exploits multiple mechanisms of resistance to various antimicrobial agents (such 
as efflux pumps, β-lactamases production, porin channel deletion, multi-functional group 
transferases, and target site mutation) (Livermore, 2002).  Some of the mechanisms of 
resistance are highly specific to one agent, while others affect a broad spectrum of 
antimicrobial agents, and confer different levels of resistance.  Resistance to first-line agents 
(such as β-lactams and fluoroquinolones) has been reported and is becoming more prevalent 
(Landman et al., 2002; Neuhauser et al., 2003).  There are very few agents in the advanced 
stage of development designed to target multi-drug resistant Gram-negative bacteria, and 
none is expected to be available for clinical use in the next decade.  Therefore, the need to 
develop antimicrobial agents against P. aeruginosa is imperative (Talbot et al., 2006).



- 6 - 

2. Background 

2.1. Pharmacodynamic indices and their limitations 

Because the complex pharmacodynamic interaction between an antimicrobial agent and a 

microbial population defies detailed first-principles modeling, surrogate pharmacodynamic 

indices, such as the minimum inhibitory concentration (MIC) (Figure 1) are used to guide 

empirical testing of dosing regimens (e.g., Andes and Craig, 1998; Louie et al., 1998; Nicolau et 

al., 2000; Louie et al., 2001; Tam et al., 2002; Dandekar et al., 2003; Andes et al., 2004; Maglio 

et al., 2004; Miyazaki et al., 2004).  This can be problematic.  For example, according to the 

standard definition of MIC and related surrogate pharmacodynamic indices, the two populations 

in Figure 1 would correspond to the same MIC (there is no visible growth at exactly 24 hours) 

although they are otherwise clearly different:  The second population could well grow beyond 24 

hours whereas the first would probably not. 
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Figure 1.  Two hypothetical killing profiles 
of microbial population size resulting in 
the same value at 24 hours after 
exposure to an antimicrobial agent at 
time-invariant concentration (Tam et al., 
2005).  The corresponding microbial 
populations would be very different in 
each case (slow decline (diamonds) 
versus rapid decline followed by regrowth 
(squares)). 

 

Along the same lines, a dosing regimen maintaining agent concentration above MIC would not 

necessarily guarantee eventual eradication of the entire population, as argued in Figure 4.  This is 

because inhibition of population growth at 24 hours leaves the possibility that a small resistant 

subpopulation of no appreciable size during the first 24 hours may well grow afterwards.  MIC 

lumps all dynamic information of a time-kill experiment into a single point.  Consequently, 
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methods that make use of all available (dynamic) information from time-kill experiments would 

be preferable.  This realization, in turn, raises the question “How is such dynamic information 

captured and used?”  We address this question in the next section. 
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Figure 2.  Example of a clinically relevant dosing 
regimen.  Periodic injection of agent every T  time units 
and its subsequent elimination result in a jump-decay 
periodic pattern ( 1/ 2

max max( ) 2 t t tC t C C e τ− −= = , 0 t T≤ < ;  
( ) ( )C t T C t+ = ) according to typical pharmacokinetics in 

humans. 

 

Figure 3.  In vitro hollow-fiber 
infection model (Bilello et al., 
1994) is a cell culture system in 
which a microbial population is 
exposed to fluctuating 
antimicrobial concentration, 
simulating human elimination 
and repeated dosing over a few 
days, corresponding to a clinical 
course of treatment.  The system 
has been used by our group to 
investigate the pre-clinical 
potential of antimicrobial agents 
under development (Tam et al., 
2005; Nikolaou et al., 2006).  
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Figure 4.  Selection of resistant P. aeruginosa 
population by garenoxacin in an in-vitro 
hollow-fiber infection model (Figure 3).  A 
population of approximately 108 CFU/ml 
bacteria was investigated (Tam et al., 2005).  
In the absence of selective pressure by 
garenoxacin ( ( ) 0C t = , top) the fraction of the 
resistant subpopulation remained low and 
relatively constant over time.  In contrast, 
exposure to a fluctuating garenoxacin 
concentration ( )C t  (bottom) as in Figure 2 
selectively amplified the resistant 
subpopulation (MIC of the resistant 
subpopulation ≥  3 × MIC of the entire 
population) and led to population regrowth, 
despite the fact that garenoxacin 
concentration ( )C t  remained well above MIC 
during the entire period of the experiment.  

2.2. Dynamic models of pharmacodynamic activity and their limitations for microbial 

populations of nonuniform susceptibility/resistance 

In an effort to use the dynamic 

information that pharmacodynamic 

indices leave out, dynamic models have 

been formulated for homogeneous 

microbial populations (i.e. of uniform 

susceptibility or resistance) based on 

conservation principles and bacteria-

agent Hill-like (Hill, 1910) kinetics 

(Wagner, 1968; Jusko, 1971; Giraldo et 

al., 2002) (Sidebar 4).  When applied to 

heterogeneous microbial populations (i.e. of nonuniform susceptibility or resistance), such 

Sidebar 4 – Basic model of effect of antimicrobial 
agent on homogeneous microbial population 

Population size Agent concentration

Physiological net growth rate Kill rate due to antimicrobial agent

( ) [ ( ) ] [ ( ), ( )]dN t G N t K C t N t
dt

= − (1) 

 
Example:  (Hill and Michaelis-Menten dynamics) 

( )
max

( )[ ( )] 1 ( ) ( )N t
g gNG N t K N t K N t= − ≈  if max( )N t N<<  

} Hill factor

50

kill rate constant, 

( )[ ( ), ( )] ( )
( )

H
k

H H

r

K C tK C t N t N t
C t C

=
+

  

The population is eradicated if and only if gr K> . 
If C  is time-invariant, eradication corresponds to 

the straight line ( )( )ln ( )
(0) g

N t K r C t
N

= − . 
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models lump sub-populations into two distinct classes:  resistant and susceptible (Lipsitch and 

Levin, 1997; Mouton et al., 1997; Jumbe et al., 2003; Gumbo et al., 2004; Meagher et al., 2004; 

Campion et al., 2005; Tam et al., 2005).  Though conceptually appealing, when such models are 

calibrated using standard short-term data (e.g. over 24-hours (Andes and Craig, 1998; Nicolau et 

al., 2000; Dandekar et al., 2003; Miyazaki et al., 2004)) they may easily fail to predict the 

emergence of resistance – manifested as eventual population regrowth (Oliver et al., 2004) – as 

shown in Figure 5 (top).  By lumping subpopulations of varied resistance into two distinct 

subpopulations (resistant and susceptible), this modeling approach essentially produces two 

asymptotes for the dependence of population size on time corresponding to short and long time, 

respectively.  As Figure 5 (top) shows, the two asymptotes estimated by fitting 24-hour data 

produce overly optimistic results beyond 24 hours.  For similar reasons, dynamic modeling 

approaches that have focused on the early time course (<60 minutes) of antimicrobial agent 

exposure (Regoes et al., 2004) are equally problematic. 
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Figure 5.  In vitro effect of the 
antibiotic meropenem on 
Pseudomonas Aeruginosa ATCC 
27853  (Tam et al., 2005).  A 
standard (two-subpopulation) 
dynamic model (top) built from 24-
hour data (dots) fails to predict 
population regrowth beyond 24 
hours (squares).  By contrast, a 
model based on the approach 
developed by Nikolaou and Tam 
(2006) (bottom) successfully 
predicts regrowth using the same 
24-hour data, thus suggesting that 
much higher antibiotic 
concentration is needed for 
eradication of the entire 
population.  
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3. A new approach to modeling the effect of antimicrobial agents on 

heterogeneous microbial populations 

To capture the decline-regrowth behavior of a heterogeneous microbial population, Nikolaou and 

Tam (2006) developed a corresponding mathematical modeling approach (excerpted in Sidebar 

5) for heterogeneous microbial populations exposed to time-invariant antimicrobial agent 

concentrations.  Dispensing with the need to rely on the asymptotic time behavior of two distinct 

sub-populations, this approach considers a distribution of resistance over a microbial population 

and employs the cumulants of that distribution.  Figure 5 (bottom) demonstrates that this 

approach can successfully make use of standard 24-hour time-kill data to predict regrowth 

beyond 24 hours and estimate the agent concentration needed to eradicate the entire microbial 

Sidebar 5 – Modeling the effect of antimicrobial agents on heterogeneous microbial 
populations 

( )2 2
1 1 2

1

( )( ) ( )[ ( )] ( ), ( ) , ( ) ,n
g n

n

d tdN t d tK t N t t t
dt dt dt

κµµ σ κ κ µ κ σ+
≥

⎧ ⎫= − = − = − ≡ ≡⎨ ⎬
⎩ ⎭

 (2) 

( )N t :  microbial population size at time t 

gK :  growth rate constant 

( )tµ , 2 ( )tσ :  average and variance of kill rate constant over entire microbial population 
( )n tκ :  n -order cumulant (Weisstein, 2005) of kill rate constant 

 For a distribution ),( trf i  of the kill rate constant r  (Sidebar 4) cumulants are defined as 

n

n

n s
tst

∂
Ψ∂

=
),(ˆ)(κ  where [ ]),(lnˆ),( tsMts =Ψ ∑=

i
i

sr trfetsM i ),(ˆ),( . 

 Simplifying assumptions (Nikolaou and Tam, 2006) yield 

( ) ( ) ( )
2 2

2

/

( ) (0) (0)ln (0) 1 1ˆ
(0)

At At
g g

b R A

N t RK t e K b t e
N A A A

σ σµ − −

−

⎛ ⎞
⎡ ⎤ ⎜ ⎟≈ − + + − = − + −⎢ ⎥ ⎜ ⎟
⎣ ⎦ ⎜ ⎟

⎝ ⎠

,   (3) 

2 2(0) (0)( ) (0) ˆAt At

b R

t e b Re
A A

σ σµ µ − −≈ − + = + ,    (4) 

2 2( ) (0) Att eσ σ −≈ .  (5) 
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population (Nikolaou and Tam, 2006). 

 Using the approach mentioned above, we can now address the following question, which 

is the main focus of this work:  “Given time-kill data over 24 hours at a number of time-invariant 

agent concentrations, what is an effective (preferably optimal) dosing regimen (daily dose and 

dosing interval) for time-varying agent concentration corresponding to realistic 

pharmacokinetics (Figure 2)?”.  Optimal here refers to the smallest daily dose and corresponding 

dosing interval that can completely eradicate a microbial population.  For lack of quantitative 

aids to answering the preceding question, it is common practice for antimicrobial killing action 

to be classified into two distinct categories:  peak-concentration- or time-of-exposure-dependent 

(Vogelman and Craig, 1986; Craig, 1998) as shown in Figure 6.  However, it has been widely 

observed that some recent antimicrobials (e.g. quinolones) do not clearly fall in either category.  

Therefore, a more quantitative answer to the preceding question is needed, as discussed next. 

 

Figure 6.   Concentration-dependent (upper) and time-
dependent (lower) killing activity of antimicrobial 
agents. In the concentration-dependent case, killing 
activity depends on the concentration of the 
antimicrobial agent used, and suggests dosing 
regimens that achieve high concentrations at injection 
points. In the time-dependent case, killing activity 
quickly reaches a plateau as agent concentration 
increases, indicating that dosing regimens need to 
maintain a certain agent concentration most of the 
time.  Increasing agent concentration will increase 
toxicity without appreciably increasing killing activity. 
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3.1. Homogeneous microbial population 

under pharmacokinetically realistic 

antimicrobial concentration 

Assume now that the antimicrobial agent 

concentration does not remain time-

invariant but fluctuates periodically due to 

periodic injection of agent every T  time 

units and its subsequent elimination, as 

shown in Figure 2.  The kill rate constant 

( ( ))r C t  will obviously fluctuate with the 

same period T.  Under these conditions, it 

can be shown (Nikolaou et al., 2007) that the total population ( )N t  exhibits a periodic pattern 

with period T, and the values of ( )log ( )N nT , 0,1,2,...,n =  lie on a straight line, akin to the case 

corresponding to time-invariant agent concentration (Sidebar 4) as summarized in Sidebar 6.  In 

other words, the points ( )
(0)

N nT
N  appear as if they were generated by a system under time-invariant 

agent concentration D, a fact that significantly simplifies the ensuing analysis (Figure 7).   

 

Figure 7.  Eradication 
(left) or regrowth (right) of 
a microbial population in 
an environment of 
antimicrobial agent 
concentration following 
Sidebar 6. 

Sidebar 6 – Model of effect of antimicrobial 
agent on heterogeneous microbial population 
A homogeneous population is subjected to 
periodically fluctuating antimicrobial agent 
concentration, i.e. ( )( )C t C t T= + .  Then, it can 
be shown (Nikolaou et al., 2007) that  

( )
0

( )ln ( )
(0)

tt T
T

g
N t tK t DT r C d
N T

η η
−

= − − ∫  

where 
t
T

 is the integer part of the real 

number 
t
T

, and ( )
0

1 ( )ˆ
T

D r C d
T

η η= ∫  is the 

time-averaged kill rate constant. 
 At times t nT= , 0,1,2,...=n  the total 
population satisfies the equation 

( )
0

( )ln g
N nT K D nT

N
= − ,  0,1,2,...=n  
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 Therefore, according to Sidebar 6, 1
g

D
K >  implies eradication of the entire microbial 

population, whereas 1
g

D
K <  implies eventual proliferation of the population, except for the case 

where eradication can occur during the first dosing interval.  The latter case can occur if the 

minimum of ln ( )N t , 0 t T≤ ≤ , is at or below 0. 

 We can now ask “For what dosing regimens is the condition 1
g

D
K >  satisfied?”  We first 

provide a qualitative approximate answer, followed by a quantitative answer. 

 Qualitatively, the value of 
g

D
K , to first-order approximation, can be shown to be 

  ( )cr cr
avg cr cr

cr

'( ) '( ) AUC /1 1 1
g g g

r C r CD TC C C
K K K C

⎛ ⎞
≈ + − = + −⎜ ⎟

⎝ ⎠
 

where the area under the concentration curve (AUC) is defined as 
0

AUC ( )ˆ
T

C t dt= ∫ .  The above 

approximation of 
g

D
K  indicates that in order to design a dosing regimen resulting in eradication of 

a microbial population, the average concentration of the agent, avg 0

1 ( )ˆ
T

C C d
T

η η= ∫ , must be 

above the critical concentration crC , defined as the concentration at which the kill rate constant 

( )crr C  is equal to the growth rate constant gK .  It follows that the effectiveness of an agent is 

approximately related to the well known pharmacokinetic/pharmacodynamic parameter 

crAUC/MIC AUC/C≈ .  However, it should be stressed that the dependence of an agent’s 

effectiveness on AUC/MIC is only approximate.  A more accurate index would have to be used 

to account for strong effects of higher-order derivatives in the above series expansion of 
g

D
K .  

This motivates the quantitative results presented next. 
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 From a quantitative viewpoint, let the agent concentration follow the realistic 

pharmacokinetic pattern max( ) ktC t C e−= ,  0 t T≤ <  (Figure 2) where 
1/ 2

ln 2
tk =  is the agent 

elimination rate constant (reciprocally proportional to the half-time 1/ 2t ) and T  is the dosing 

interval; and let the kill rate constant follow the Michaelis-Menten/Hill kinetics in Sidebar 4.  

Then it can be shown (Nikolaou et al., 2007) that the value of 
g

D
K  can be influenced by selecting 

two dimensionless variables associated with the dose and dosing interval of a dosing regimen, 

namely the scaled average concentration 

avg

cr
ˆ C

Cz =  (or, equivalently, avg

50
ˆ C

Cy = ) and the 

scaled dosing interval ˆx kT= , where avgC  

is proportional to the administered dose 

(mass of agent over 24 hour period).  The 

functional dependence of 
g

D
K  on x , z  

depends on two pharmacodynamic 

parameters:  H  and k

g

K
K . 

 Thus, if the values of H  and 

( )50

cr
1k

g

HK C
K C= +  have been estimated from 

experimental time-kill data, one can 

visualize the agent effectiveness, i.e. value 

of 
g

D
K  in comparison to 1, as a function of 

the two variables that characterize a dosing regimen, namely avg

cr
ˆ C

Cz =  and ˆx kT=  (Sidebar 7).  
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Figure 8 shows a small library of such patterns for different values of H  and k

g

K
K , along with 

associated plots of the scaled kill rate constant ( )
k

r C
K  as a function of 

cr

C
C .  A careful examination 

of these patterns for 
g

D
K  (lines corresponding to 1

g

D
K = ) reveals qualitatively different behaviors 

for different values of H  and k

g

K
K , suggesting different designs for optimal dosing regimens.  For 

example, for 1H =  and 5k

g

K
K =  it is clear that the shorter the dosing interval T (Figure 2), the 

lower the dose that can be used.  Consequently, the optimal dosing regimen would be continuous 

infusion.  This is due to the dependence of the kill rate constant r on C:  A relative increase in C 

is associated with a lower relative increase in r.  Therefore, for a periodically fluctuating profile 

of C around an average value avgC  a lot more killing power r would be lost while avg( )C t C<  

than would be gained while avg( )C t C> .  By contrast, 4H =  and 5k

g

K
K =  in Figure 8 indicates 

that there is an optimal value (around 5kT = ) for the dosing interval T at the cut-off point 

1
g

D
K = , corresponding to the minimum dose avg cr 1C C ≈ .  This is due to the presence of an 

inflection point in the curve corresponding to the dependence of the kill rate constant r on C:  

Around the inflection point, a relative increase in C is associated with a lower relative increase in 

r.  However, a relative decline in C is also associated with a lower relative decline in r.  

Therefore, in balance, for a periodically fluctuating profile of C around the optimal average value 

avgC  a lot less killing power r is lost while avg( )C t C<  than is gained while avg( )C t C> .  While 

Figure 8 may be sensitive to experimental errors in the estimates of H and k

g

K
K , it establishes a 

continuum for the model of action of antimicrobial agents, at the two ends of which are the two 

well known categories, namely peak-concentration- or time-of-exposure-dependent, established 

by Vogelman and Graig (1986). 
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Figure 8.  A library of behaviors of 
g

D
K

 as a function of kT  and avg

cr

C
C

.  The optimal dosing 

regimen corresponds to the smallest possible value of avgC  that results in eradication of a 

microbial population, namely 1
g

D
K

> .  The dependence of optimal avgC  on k

g

K
K

 and H  is 

qualitatively different for different values of k

g

K
K

 and H . 

 

3.2. Heterogeneous microbial population under pharmacokinetically realistic antimicrobial 

concentration 

We are not going to use the results of the preceding sections to develop a method for designing 

optimal dosing regimens for heterogeneous microbial populations (i.e. of nonuniform 

susceptibility or resistance).  From a theoretical viewpoint, it would be interesting to develop an 

equation for ( )ln
(0)

N t
N

 analogous to that in Sidebar 6.  However, the following reasoning makes 

this requirement unnecessary:   

 To design an optimal dosing regimen it is required to find the minimum of the time-

averaged agent concentration avgC  and corresponding dosing interval T  that will eradicate a 

microbial population entirely.  To accomplish this, it is necessary and sufficient to eradicate the 

most resistant subpopulation of the microbial population, by finding the minimum of the time-

averaged agent concentration avgC  and corresponding dosing interval T  for that subpopulation.  

According to the analysis in section 3.1, eradication of the most resistant subpopulation means 

that 1
g

D
K

>  for that subpopulation, as suggested in Figure 8.  Hence, the dependence of 
g

D
K

 on 
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dosing regimens (namely avgC  and T ) for that subpopulation must be estimated from 

experimental data.  Now, the analysis in section 3.1 indicates that standard time-kill experiments 

can be used for that purpose.  Indeed, for a heterogeneous population subjected to a number of 

time-invariant agent concentrations C, eqn. (4) in Sidebar 5 indicates that the population-average 

kill rate constant will eventually reach a value b for each time-invariant agent concentration C.  

This C-dependent kill rate constant, b, corresponds to the most resistant subpopulation, which 

will eventually dominate the entire population, and which is homogeneous, as suggested by eqn. 

(5) when t →∞ .  Therefore, it is reasonable to assume that the functional dependence of b on C 

follows the kinetics discussed in Sidebar 4, namely 

  
50

( )
b

b b

H

b H H
b

Cb C K
C C

=
+

   

Similarly, it can be argued (Nikolaou and Tam, 2006) that it is reasonable to postulate that  

  
50 50

( )
b

b b

HH

k b H HH H
b

C CR C K K
C C C C

= −
+ +

   

and 

  
50

( )
A

A A

H

A H H
A

CA C K
C C

=
+

  

 Therefore, if experimental data are available from time-kill studies (measurements of 

population size at various sampling points in time, for a number of time-invariant concentrations 

C), then the parameters involved in the above expressions for ( )b C , ( )R C , and ( )A C  can be 

estimated.  Then, using the identified expression for ( )b C  in place of ( )r C  in the analysis of 
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Sidebar 7, one can construct a surface showing the dependence of 
g

D
K

 on avgC  and T , as in 

Figure 8.   

3.3. Experimental verification 

We discuss an example of our approach (Nikolaou and Tam, 2006; Nikolaou et al., 2007) where 

effective dosing regimens (dose and dosing intervals) are characterized for levofloxacin against 

P. aeruginosa.  Time-kill data are collected over 24 hours at various time-invariant 

concentrations of levofloxacin, and curve-fit using the approach discussed in section 3.2, as 

shown in Figure 9. 

 

Figure 9.  Time-kill studies of 
levofloxacin against P. 
aeruginosa ATCC 27853 (MIC = 
2 µg/ml).  For 

32 MIC 64 µg/mlC = × =  there 
are no points beyond 1 hour, 
since all bacteria appear to have 
been eradicated beyond that 
point in time.  Fit of the 
experimental data shown is done 
using equation (3) in Sidebar 5, 
with dependence of ( )b C , ( )R C , 
and ( )A C  as discussed above in 
the text. 

 

Subsequent to that, the equations of Sidebar 7 are use to construct the gD K  surface as a 

function of dosing regimen, namely daily dose and dosing interval for given pharmacokinetics 

(Figure 10).  According to Figure 10, daily doses of 750 and 3000 mg daily are predicted to be 

ineffective and completely effective, respectively. 
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Figure 10.  Model prediction of bactericidal effect of 
levofloxacin on P. aeruginosa for dosing regimens as in 
Figure 2 ( 1/ 2 6 hrst = , 24 hrsT = ).  Dosing regimens 
(combinations of daily dose and dosing interval) 
associated with resistance suppression correspond to 

1gD K >  where ( )1
0

( )ˆ
T

TD r C t dt= ∫  is the average kill 

rate over T .  Periodic agent injection every T =  24 
hours requires above 2200 mg of levofloxacin for 
complete eradication of the entire bacterial population.  
This prediction was verified both in a hollow-fiber in vitro 
model (Figure 3) and in a murine-thigh in vivo model 
(Jumbe et al., 2003) and is significantly higher than the 
standard dosing recommended for levofloxacin. 

 

This was verified experimentally in a hollow-fiber in vitro infection model (Figure 3), as shown 

in Figure 11.   
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Figure 11.  Prospective validation of the 
mathematical model in the hollow-fiber infection 
model for placebo (a), levofloxacin 750mg (b), 
levofloxacin 3000 mg (c) given every 24 hours.  
Data presented as mean and standard deviation 
of duplicate samples. 
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Dosing regimens predicted to be effective (corresponding to values of the index gD K  greater 

than 1) or ineffective ( 1gD K < ) were compared to published data regarding the threshold 

quinolone exposure necessary to suppress resistance development of P. aeruginosa in a murine 

thigh infection model (Jumbe et al., 2003).  Despite the differences between the two modeling 

approaches, the estimates of the levofloxacin exposure necessary for resistance suppression were 

consistent [approximately 2900 mg daily (total AUC/MIC = 157, free AUC/MIC = 110) 

demonstrated previously in the murine thigh infection model versus 2200 mg daily predicted by 

our model].  The closeness of our mathematical model predictions to the murine thigh infection 

model data exemplifies the usefulness of the proposed approach as a tool offering guidance to 

optimal design of dosing regimens. 

4. Summary and Future Work 

We have presented a mathematical modeling framework to design optimal dosing regimens of 

antimicrobial agents for complete eradication of microbial populations comprising 

subpopulations of varying degrees of susceptibility/resistance.  Preliminary experimental 

verification of the proposed framework was presented.  Further work is needed to identify the 

limits of the mathematical modeling framework for various combinations of microbial 

populations and antimicrobial agents, identify its sensitivity to available data, develop 

experimental protocols for collection of better experimental data, and potentially extend the 

framework to other related cases such as cancer chemotherapy. 

 

Acknowledgement:  Partial support from the University of Houston through a GEAR grant and 

from the Johns Hopkins Center for Alternatives to Animal Testing is gratefully acknowledged. 



- 26 - 

5. References 
 

Andes, D. and W. A. Craig (1998). "In vivo activities of amoxicillin and amoxicillin-clavulanate 
against Streptococcus pneumoniae: application to breakpoint determinations." Antimicrob 
Agents Chemother 42(9): 2375-9. 

Andes, D., K. Marchillo, R. Conklin, G. Krishna, F. Ezzet, A. Cacciapuoti and D. Loebenberg 
(2004). "Pharmacodynamics of a new triazole, posaconazole, in a murine model of 
disseminated candidiasis." Antimicrob Agents Chemother 48(1): 137-42. 

Bilello, J. A., G. Bauer, M. N. Dudley, G. A. Cole and G. L. Drusano (1994). "Effect of 2',3'-
didehydro-3'-deoxythymidine in an in vitro hollow-fiber pharmacodynamic model system 
correlates with results of dose-ranging clinical studies." Antimicrob Agents Chemother 
38(6): 1386-91. 

Bonhoeffer, S., M. Lipsitch and B. R. Levin (1997). "Evaluating treatment protocols to prevent 
antibiotic resistance." Proc Natl Acad Sci U S A 94(22): 12106-11. 

Campion, J. J., P. J. McNamara and M. E. Evans (2005). "Pharmacodynamic modeling of 
ciprofloxacin resistance in Staphylococcus aureus." Antimicrob Agents Chemother 49(1): 
209-19. 

Chait, R., A. Craney and R. Kishony (2007). "Antibiotic interactions that select against 
resistance." Nature 446(7136): 668-671. 

Cohen, M. L. (1992). "Epidemiology Of Drug-Resistance - Implications For A Postantimicrobial 
Era." Science 257(5073): 1050-1055. 

Comarow, A. (2006). "Bugs Behaving Badly." U.S. News & World Report 140(1). 
Craig, W. A. (1998). "Pharmacokinetic/Pharmacodynamic Parameters:  Rationale for 

Antibacterial Dosing of Mice and Men." Clinical Infectious Diseases 26: 1-12. 
Dandekar, P. K., P. R. Tessier, P. Williams, C. H. Nightingale and D. P. Nicolau (2003). 

"Pharmacodynamic profile of daptomycin against Enterococcus species and methicillin-
resistant Staphylococcus aureus in a murine thigh infection model." J Antimicrob 
Chemother 52(3): 405-11. 

Di Justo, P. (2005). "The Bug Wars." Wired(October): 52-53. 
Drlica, K. A. (2001). "Strategy for Fighting Antibiotic Resistance." ASM News 67(1): 27-33. 
Drusano, G. L., A. Louie, M. Deziel and T. Gumbo (2006). "The Crisis of Resistance: 

Identifying Drug Exposures to Suppress Amplification of Resistant Mutant 
Subpopulations." Clinical Infectious Diseases 

 42(4): 525–532. 
Dua, P., V. Dua and E. N. Pistikopoulos (2005). Optimal Control of Cancer by Delivery of 

Chemotherapeutic Agents. AIChE Annual Meeting, Cincinnati, OH. 
Food and Drug Administration. (2006). "Antimicrobial Resistance." 2007, from 

www.fda.gov/cvm/antiresistvideo.htm. 
Giraldo, J., N. M. Vivas, E. Vila and A. Badia (2002). "Assessing the (a)symmetry of 

concentration-effect curves:  empirical versus mechanistic models." Pharmacology & 
Therapeutics 95: 21-45. 

Gold, H. S. and R. C. Moellering (1996). "Antimicrobial-drug resistance." N. Engl. J. Med. 335: 
1444-1453. 



- 27 - 

Gumbo, T., A. Louie, M. R. Deziel, L. M. Parsons, M. Salfinger and G. L. Drusano (2004). 
"Selection of a moxifloxacin dose that suppresses drug resistance in Mycobacterium 
tuberculosis, by use of an in vitro pharmacodynamic infection model and mathematical 
modeling." J Infect Dis 190(9): 1642-51. 

Hill, A. V. (1910). "The possible effects of the aggregation of the molecules of haemoglobin on 
its dissociation curves." J. Physiol. 40: iv-vii. 

Jumbe, N., A. Louie, R. Leary, W. Liu, M. R. Deziel, V. H. Tam, R. Bachhawat, C. Freeman, J. 
B. Kahn, K. Bush, M. N. Dudley, M. H. Miller and G. L. Drusano (2003). "Application 
of a mathematical model to prevent in vivo amplification of antibiotic-resistant bacterial 
populations during therapy." J Clin Invest 112(2): 275-85. 

Jusko, W. (1971). "Pharmacodynamics of chemotherapeutic effects: dose-time-response 
relationships for phase-nonspecific agents." J Pharm Sci 60: 892-895. 

Landman, D., J. M. Quale, D. Mayorga, A. Adedeji, K. Vangala, J. Ravishankar, C. Flores and S. 
Brooks (2002). "Citywide clonal outbreak of multiresistant Acinetobacter baumannii and 
Pseudomonas aeruginosa in Brooklyn, NY: the preantibiotic era has returned." Arch 
Intern Med 162: 1515-1520. 

Landman, D., J. M. Quale, D. Mayorga, A. Adedeji, K. Vangala, J. Ravishankar, C. Flores and S. 
Brooks (2002). "Citywide clonal outbreak of multiresistant Acinetobacter baumannii and 
Pseudomonas aeruginosa in Brooklyn, NY: the preantibiotic era has returned." Arch 
Intern Med 162(13): 1515-20. 

Levy, S. B. (1998). "The Challenge of Antibiotic Resistance." Scientific American. 
Levy, S. B. and B. Marshall (2004). "Antibacterial resistance worldwide: causes, challenges and 

responses." Nature Medicine 10(12): S122-S129. 
Lipsitch, M., T. H. Bacon, J. J. Leary, R. Antia and B. R. Levin (2000). "Effects of antiviral 

usage on transmission dynamics of herpes simplex virus type 1 and on antiviral 
resistance: predictions of mathematical models." Antimicrob Agents Chemother 44(10): 
2824-35. 

Lipsitch, M. and B. R. Levin (1997). "The population dynamics of antimicrobial chemotherapy." 
Antimicrob Agents Chemother 41(2): 363-73. 

Lipsitch, M. and B. R. Levin (1997). "The Population Dynamics of Antimicrobial 
Chemotherapy." Antimicrobial Agents and Chemotherapy 41(2): 363-373. 

Livermore, D. M. (2002). "Multiple mechanisms of antimicrobial resistance in Pseudomonas 
aeruginosa: our worst nightmare?" Clin Infect Dis 34(5): 634-40. 

Louie, A., G. L. Drusano, P. Banerjee, Q. F. Liu, W. Liu, P. Kaw, M. Shayegani, H. Taber and 
M. H. Miller (1998). "Pharmacodynamics of fluconazole in a murine model of systemic 
candidiasis." Antimicrob Agents Chemother 42(5): 1105-9. 

Louie, A., P. Kaw, W. Liu, N. Jumbe, M. H. Miller and G. L. Drusano (2001). 
"Pharmacodynamics of daptomycin in a murine thigh model of Staphylococcus aureus 
infection." Antimicrob Agents Chemother 45(3): 845-51. 

Maglio, D., C. Ong, M. A. Banevicius, Q. Geng, C. H. Nightingale and D. P. Nicolau (2004). 
"Determination of the in vivo pharmacodynamic profile of cefepime against extended-
spectrum-beta-lactamase-producing Escherichia coli at various inocula." Antimicrob 
Agents Chemother 48(6): 1941-7. 

Meagher, A. K., A. Forrest, A. Dalhoff, H. Stass and J. J. Schentag (2004). "Novel 
pharmacokinetic-pharmacodynamic model for prediction of outcomes with an extended-
release formulation of ciprofloxacin." Antimicrob Agents Chemother 48(6): 2061-8. 



- 28 - 

Miyazaki, S., K. Okazaki, M. Tsuji and K. Yamaguchi (2004). "Pharmacodynamics of S-3578, a 
novel cephem, in murine lung and systemic infection models." Antimicrob Agents 
Chemother 48(2): 378-83. 

Morens, D. M., G. K. Folkers and A. S. Fauci (2004). "The challenge of emerging and re-
emerging infectious diseases." Nature 430(08 July): 242 - 249. 

Mouton, J. W., A. A. Vinks and N. C. Punt (1997). "Pharmacokinetic-pharmacodynamic 
modeling of activity of ceftazidime during continuous and intermittent infusion." 
Antimicrob Agents Chemother 41(4): 733-8. 

Neu, H. C. (1992). "The crisis in antibiotic resistance." Science 257: 1064-1073. 
Neuhauser, M. M., R. A. Weinstein, R. Rydman, L. H. Danziger, G. Karam and J. P. Quinn 

(2003). "Antibiotic resistance among gram-negative bacilli in US intensive care units: 
implications for fluoroquinolone use." Jama 289(7): 885-8. 

Nicolau, D. P., C. O. Onyeji, M. Zhong, P. R. Tessier, M. A. Banevicius and C. H. Nightingale 
(2000). "Pharmacodynamic assessment of cefprozil against Streptococcus pneumoniae: 
implications for breakpoint determinations." Antimicrob Agents Chemother 44(5): 1291-
5. 

Nikolaou, M., A. N. Schilling, G. Vo, K.-t. Chang and V. H. Tam (2006). "Modeling of 
Microbial Population Responses to Time-Periodic Concentrations of Antimicrobial 
Agents." Annals of Biomedical Engineering accepted. 

Nikolaou, M., A. N. Schilling, G. Vo, K.-t. Chang and V. H. Tam (2007). "Modeling of 
Microbial Population Responses to Time-Periodic Concentrations of Antimicrobial 
Agents." Annals of Biomedical Engineering DOI: 10.1007/s10439-007-9306-x. 

Nikolaou, M. and V. H. Tam (2006). "A New Modeling Approach to the Effect of Antimicrobial 
Agents on Heterogeneous Microbial Populations." Journal of Mathematical Biology 
52(2): 154-182. 

Oleson, J., B. T. Frederick and P. Francis (2005). Methods for administration of antibiotics. U. S. 
P. 6852689, Cubist Pharmaceuticals, Inc. 

Oliver, A., B. R. Levin, C. Juan, F. Baquero and J. Blazquez (2004). "Hypermutation and the 
preexistence of antibiotic-resistant Pseudomonas aeruginosa mutants: implications for 
susceptibility testing and treatment of chronic infections." Antimicrob Agents Chemother 
48(11): 4226-33. 

Regoes, R. R., C. Wiuff, R. M. Zappala, K. N. Garner, F. Baquero and B. R. Levin (2004). 
"Pharmacodynamic functions: a multiparameter approach to the design of antibiotic 
treatment regimens." Antimicrob Agents Chemother 48(10): 3670-6. 

Silberman, S. (2007). "Requiem for the Magic Bullets." Wired(January 22). 
Spellberg, B., J. H. Powers, E. P. Brass, L. G. Miller and J. E. Edwards, Jr. (2004). "Trends in 

antimicrobial drug development: implications for the future.(Major Article)." (Major 
Article) 38(9): 1279(8). 

Talbot, G. H., J. Bradley, J. E. Edwards, Jr., D. Gilbert, M. Scheld and J. G. Bartlett (2006). "Bad 
bugs need drugs: an update on the development pipeline from the Antimicrobial 
Availability Task Force of the Infectious Diseases Society of America." Clin Infect Dis 
42(5): 657-68. 

Tam, V., A. Schilling, D. Melnick and E. Coyle (2005). "Comparison of beta-lactams in counter-
selecting resistance of Pseudomonas aeruginosa." Diagn Microbiol Infect Dis 52(2): 145-
151. 



- 29 - 

Tam, V. H., A. Louie, M. R. Deziel, W. Liu, R. Bachhawat, D. Gajjar, D. Grasela and G. L. 
Drusano (2002). Pharmacodynamics of garenoxacin in a murine thigh infection model of 
Staphylococcus aureus. Annual meeting of the Infectious Diseases Society of America, 
Chicago, Illinois. 

Tam, V. H., A. Louie, M. R. Deziel, W. Liu, R. Leary and G. L. Drusano (2005). "Bacterial-
Population Responses to Drug-Selective Pressure: Examination of Garenoxacin's Effect 
on Pseudomonas aeruginosa." J Infect Dis 192(3): 420-8. 

Tam, V. H., A. N. Schilling and M. Nikolaou (2005). "Modelling time-kill studies to discern the 
pharmacodynamics of meropenem." J Antimicrob Chemother 55(5): 699-706. 

UCSF. (2006). "Daptomycin." from 
http://www.ucsf.edu/idmp/whatsnew/dapto_monograph.htm. 

Varaldo, P. E. (2002). "Antimicrobial resistance and susceptibility testing: an evergreen topic." 
Journal of Antimicrobial Chemotherapy 50: 1-4. 

Vogelman, B. and W. Craig (1986). "Kinetics of Antimicrobial Activity." The Journal of 
Pediatrics 108(2): 835-840. 

Wagner, J. (1968). "Kinetics of Pharmacologic Response I.  Proposed Relationships between 
Response and Drug Concentration in the Intact Animal and Man." J. Theoret. Biol. 20: 
173-201. 

Weisstein, E. W. (2005). "Cumulant." MathWorld--A Wolfram Web Resource, 2005, from 
http://mathworld.wolfram.com/Cumulant.html. 

 
 


