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Self-Consistent Modeling of Nonlocal Inductively
Coupled Plasmas

Oleg V. Polomarov, Constantine E. Theodosiou, Igor D. Kaganovich, Demetre J. Economou, and
Badri N. Ramamurthi

Abstract—In low-pressure radio-frequency (RF) discharges,
the electron-energy distribution function (EEDF) is typically
non-Maxwellian for low plasma density. The nonlocal plasma
conductivity, plasma density profiles, and EEDF are all nonlinear
and nonlocally coupled. For accurate calculation of the discharge
characteristics, the EEDF needs to be computed self-consistently.
The method of fast self-consistent one-dimensional of planar
inductively coupled discharges driven by a RF electromagnetic
field is presented. The effects of a non-Maxwellian EEDF, plasma
nonuniformity, and finite size, as well as the influence of the
external magnetic field on the plasma properties are considered
and discussed.

Index Terms—Anomalous heating, collisionless heating, plasma
discharges, stochastic heating.

I. INTRODUCTION

LOW-PRESSURE radio-frequency (RF) inductive-coupled
plasma (ICP) are extensively used for plasma aided ma-

terials processing, semiconductor manufacturing, and lighting
[1], [2]. For very low pressures, i.e., in the mtorr range, ICP dis-
charges exhibit a strong nonlocal behavior and a number of pe-
culiar physical effects typical of warm plasmas, such as anoma-
lous skin penetration and a resonant wave–particle interaction
[3]–[5]. Understanding of these effects can help design and op-
timization of the ICP sources, resulting in improvement of char-
acteristics of plasma-based devices.

A gas discharge is a complex, nonlinear, multiparametric,
self-organizing system, characterized by enormous disparity
of temporal, spatial, and energy scales. Therefore, discharge
simulations using “brute-force” numerical solutions of the gov-
erning equations (e.g., particle-in-cell/Monte Carlo collision)
can be extremely time and labor consuming. For example, the
simulation time step is limited typically by the electron plasma
frequency, which is of the order of 0.1 ns, whereas the time
needed to establish discharge steady-state is of the order of
10 000 ns [1]. One way to reduce the computational burden is
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to implement fast kinetic modeling to eliminate fast time and
small spatial scales by using appropriate space-time averaging
procedures. The resulting averaged equations are usually much
simpler, and can be effectively integrated using a desktop com-
puter. This is important for analyzing engineering applications
of discharge plasmas. Another benefit of fast kinetic modeling
is gaining thorough insight in the discharge behavior, and this
is not easily available through direct numerical modeling. The
description of the one-dimensional (1-D), fast, self-consistent,
kinetic modeling of low-pressure nonlocal ICP RF-discharges,
is the main topic of this paper.

Note that, the formalism described here as applied to ICPs,
can also be applied to other problems of wave–particle inter-
action in nonuniform plasmas, i.e., semiconductor physics,
laser–plasma interactions, collective phenomena during propa-
gation of intense beams, RF heating of plasmas in discharges
and tokamaks, etc.

In the first part of this paper, the results of self-consistent nu-
merical modeling of a nonuniform low-pressure plasma are pre-
sented, focusing on nonmagnetized ICP discharges. The pro-
nounced influence of the electrostatic potential on plasma pa-
rameters at the bounce resonance condition is demonstrated [6].
This phenomenon is of importance in a wide range of problems
related to penetration of electromagnetic waves into bounded
low-pressure warm plasmas, and a similar formalism can be ap-
plied to a number of other cases [7].

The addition of the weak external magnetic field can sub-
stantially change the ICP discharge properties due to enhanced
electron heating by electron cyclotron (ECR) and transmis-
sion resonances [8]. The influence of an external magnetic
field on the plasma properties was extensively investigated in
the 1960s–1970s in connection with plasmas in metals, and
recently for gaseous ICP discharges [9]–[12]. However, most
theoretical results where obtained for uniform plasmas and a
prescribed electron energy distribution (EEDF) function (Fer-
mian or Maxwellian). Self consistent kinetic calculation of the
discharge plasma parameters, taking into account the plasma
nonuniformity and possible nonequilibrium EEDF, is still a
challenging task. A detailed description of fast, self-consistent
modeling of nonuniform weakly-magnetized ICP discharges
and analysis of the related ECR and transmission resonances
are the topic of the second part of this paper.

The presented approach differs from the most previous
analytical and semianalytical works on the low-pressure ICP
as it allows a self-consistent treatment of the low-collisional,
nonuniform plasmas with nonlocal conductivity operator.
Having given atomic cross sections, discharge dimensions, and
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applied power or the driving coil current, the presented model
yields the consistent EEDF, the RF electric field, and plasma
density profiles. Moreover 1) the possibility of modeling of
the nonuniform plasmas with a non-Maxwellian EEDF differs
the presented model from the other studies on nonlocal ICP
such as [12]–[18] where a uniform plasma or a Maxwellian
EEDF are used and 2) the possibility of the modeling of the
nonlocal kinetic effects differs the model from the existing
self-consistent treatments of the collisional discharges with
local conductivity operators such as [19], [20].

II. ENHANCED COLLISIONLESS HEATING IN NONUNIFORM

NONMAGNETIZED PLASMA

An interesting effect that can lead to enhanced heating for
bounded, low-pressure plasmas is a bounce resonance between
the frequency of the driving RF field and the frequency of
the bounce motion of the plasma electrons confined into the po-
tential well by an electrostatic ambipolar potential and the
sheath electric fields near the plasma edges [13], [15], [21]–[23],
[37]. Most earlier theoretical and numerical studies on this sub-
ject assumed for simplicity a uniform plasma density and the
absence of an electrostatic potential. As a result, the electrons
bounced inside a potential that is flat inside the plasma and infi-
nite at the walls [13], [16]–[18]. Although these suppositions
can result in a qualitative description of the plasma behavior
under nonresonant conditions, the plasma parameters under res-
onant conditions can be greatly altered by accounting for the
presence of the electrostatic potential, which always exists in
real-life bounded plasmas.

It is a well-known result of the quasi-linear theory, that the
electron heating of low-collisional, warm plasmas essentially
depends on the resonant electrons, or electrons with velocities
equal to the phase velocities of the plane waves constituting the
RF field [22], [23], [37]. For bounded plasmas, the

spectrum is discrete, and the above condition transforms into
the requirement that the RF field frequency must be equal to
or be an integer multiple of the bounce electron frequency

. If the electron mean free path is much larger than
the discharge gap , the resonant electrons (with )
accumulate velocity changes in successive interactions with the
RF electric field, which lead to a very effective electron heating
[14], [21], [24]–[26]. The electron bounce frequency is very sen-
sitive to the actual shape of the electrostatic potential, especially
for low-energy electrons. Accounting for the electrostatic poten-
tial can bring the plasma electrons into a resonant region, even if
they were not there in the absence of the potential. The increase
of the number of the resonant electrons results into a drastic en-
hancement of the plasma heating.

A. Basic Equation

Our model assumes a 1-D, slab geometry, ICP discharge of
a plasma bounded on both sides by parallel walls with a gap
length , as it is shown in Fig. 1.

The surface currents, produced by an external RF source, flow
in opposite directions. The induced RF electric field is di-
rected along the walls. The static electric field ,
directed towards the discharge walls, keeps electrons confined

Fig. 1. 1-D model of bounded ICP. (Color version available online at http://
ieeexplore.ieee.org.)

and the plasma quasi-neutral, i.e., . In the present
treatment of plasmas with density cm , the
sheath width is neglected, because it is of the order of a few hun-
dreds of microns, which is small compared with the discharge
dimension . Furthermore, it is assumed that the plasma elec-
trons experience specular reflection either at the discharge walls

by the sheath electric field, if the electron energy
is larger than , or at the turning

points , where , by the static electric field
in the plasma. The above 1-D scheme is a good approximation
for a cylindrical ICP discharge, if the RF field penetration depth,
or skin depth into the plasma is less than the plasma cylinder
radius [27], [38]. Note, that the correspondence between 1-D
geometry used in this paper and the more practical cylin-
drical configuration is: , . In particular, for a
cylinder is directed along and along .

A self-consistent study of the discharge properties involves
calculation of the EEDF , the RF electric field , and
the ambipolar potential . The full description of the mathe-
matical formalism is given in [6], [7], [28]. See also the second
part of this paper where the upgraded version of the formalism
with inclusion of external magnetic field is developed.

The EEDF is obtained from the temporal-spatial aver-
aged Boltzmann equation

(1)

Here, the upper bar denotes spatial averaging according to [28],
is the inelastic collision integral and the coefficients ,

and stem from the elastic and electron–electron colli-
sion integrals, respectively, and are given in [29], [39].

The energy diffusion coefficient, responsible for electron
heating, is given by

(2)
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where is the collision frequency and ,

where is the half of
the bounce period of electron motion in the potential well, and

is the velocity kick ac-
quired by an electron with energy during one bounce period
[28].

Electric field is obtained from a single scalar equation

(3)

where is the surface (coil) current and is the plasma
electron current density calculated from the anisotropic part
of the EEDF, obtained from the linearized Boltzmann equation
[28].

The electrostatic potential is obtained using
the quasi-neutrality condition , where

is the electron density
profile and is the ion density profile, obtained from a
set of the fluid conservation equations for ion density and
momentum [30], [40].

B. Results and Discussion

The total power , deposited into the plasma per unit square
of a side surface, is related to the electron energy diffusion co-
efficient as [6], [28]

(4)

The dependence of plasma heating on resonant electrons is es-
pecially pronounced for , [7], because in this case the
last factor on the right hand site of (2) tends to the Dirac delta
function. As a result, the electron heating does not depend on
the collision frequency and accounts explicitly for the bounce
resonance

(5)

However, if nonlinear effects are taken into account the col-
lisionless heating may depend explicitly on the collision fre-
quency [31]. Note that if , the summation in (2) can
be replaced by integration over the corresponding wave vectors

, and the bounce resonance condition transforms
into the wave–particle resonance condition for a con-
tinuous wave spectrum.

The presence of ambipolar potential can greatly affect the
electron heating due to the fact that the number of resonant
electrons is generally larger for a nonuniform plasma than for
a uniform plasma [7]. Eq. (2) shows that for (when
the effect of a bounce resonance is important) only resonant
electrons, i.e., electrons in the energy range corresponding to

, or give essential
contributions to the energy diffusion coefficient. As is evident
from Fig. 2, which shows the dependence of the electron bounce

Fig. 2. Electron bounce frequency 
 (" ), as a function of the electron en-
ergy " = mv =2 � e�(x) for different potential wells, consisting of the
reflecting walls and different ambipolar potentials �(x). Solid line corresponds
to a uniform plasma with �(x) = 0, dashed line quadratic potential �(x) =
5�(2x=L�1) eV and dotted line; the realistic potential obtained from the ion
fluid model with T = 5 eV. Discharge length is L = 3 cm. Box of hight 2�
shows the resonance region, corresponding to ! = 8:52 10 s . Arrows show
electron energies in the resonance region [6]. (Color version available online at
http://ieeexplore.ieee.org.)

frequency on the electron energy for different poten-
tial wells, the number of resonant electrons increases if the am-
bipolar potential is taken into account. In the limit of a parabolic
potential, the bounce frequency is the same for all electrons and
all electrons can be resonant simultaneously. The realistic po-
tential is close to parabolic in the discharge center and changes
faster at the plasma periphery. As a result, the number of res-
onant electrons in nonuniform plasma is much larger than in
uniform plasma, see Fig. 1.

To explicitly show the importance of accounting for am-
bipolar potential on the calculation of plasma heating, we
performed numerical simulations of the plasma resistance for
uniform and nonuniform plasmas (with and without ambipolar
potential) for a given Maxwellian EEDF. Specifically, we ob-
tained results for the plasma surface resistance, or the real part
of the surface impedance , as a function of
the plasma length. and are the electric and magnetic field
at the wall [5]. The plasma surface resistance is related to the
power deposition as , where is the effective am-
plitude of the driving current. From Fig. 3 it is evident that the
presence of ambipolar potential significantly enhances plasma
resistance under the bounce resonance condition cm ,
comparing to the case of a uniform plasma. The most profound
change in resistance is observed for a quadratic potential,
because in this case all trapped electrons have the same bounce
frequency, and, thus, all of them are resonant. The maximum
of plasma surface resistance in Fig. 3 occurs due to the first
bounce resonance in (5). At larger , a smaller maximum
exists due to the second resonance in (5). The obtained
results explicitly show that neglecting the ambipolar potential,
as is often done for simplicity, can lead to large discrepancies,
especially for conditions close to the bounce resonance.

The bounce frequency increases with decreasing of the
gap size for both uniform and nonuniform plasmas, but in
the nonuniform plasma the bounce frequency for low energy
electrons does not tend to zero, as shown in Fig. 2 and Fig. 6(c).
As a result, can be satisfied for all electrons, which
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Fig. 3. Plasma resistance ReZ as a function of the discharge gap L for a
uniform plasma (without any ambipolar potential: the solid line) and nonuni-
form plasma (quadratic potential: the dashed line, and the realistic potential
obtained from the ion fluid model: the dotted line) with a given Maxwellian
EEDF. Plasma parameters are: electron temperature T = 5 eV, peak elec-
tron density at the discharge center n = 5� 10 cm , RF field frequency
!=2� = 13:56 MHz, and the electron collision frequency � = 10 s [6].
(Color version available online at http://ieeexplore.ieee.org.)

Fig. 4. Self-consistent simulations of the plasma surface resistance ReZ and
the electron temperature T (defined as 2/3 of the average electron energy) at
the discharge center as functions of the discharge gap. Discharge parameters are
the coil current I = 5 A=cm, the RF field frequency !=2� = 13:56MHz and
Argon pressure P = 3 mtorr [6].

leads to complete disappearance of the collisionless heating for
small gaps in the nonuniform plasma [see Fig. 3 and Fig. 6(a)]
in contrast to the limit of uniform plasma.

C. Self-Consistent Simulations

The aforementioned phenomena has been observed in a fully
self-consistent simulation of the EEDF, RF electric field, and
ambipolar potential for a given coil current which have been
performed for 13.56-MHz RF driving frequency.

Fig. 4 shows dependence of the plasma surface resistance
on the discharge dimension. The simulations have been per-
formed for discharge gaps in the range 3–10 cm (discharge can
not be sustained for cm). The calculated plasma sur-
face resistance has a sharp maximum for the resonant condition

, which corresponds to the discharge gap 3 cm. Note
that the plasma density is not a constant as in Fig. 2; it is approx-
imately proportional to the plasma surface resistance, as more
power is deposited for larger .

Fig. 5. Results of self-consistent simulations for the discharge gap L = 3 cm
corresponding to the bounce resonance, andL = 10 cm for the same conditions
as in Fig. 4. (a) Electron density and ambipolar potential profiles. (b) EEDF and
the energy diffusion coefficient D (") profiles.

The self-consistent electrostatic potential and ion–electron
density profiles are plotted in Fig. 5(a) for two different dis-
charge lengths: 3 cm, corresponding to the bounce resonance
condition, and 10 cm, corresponding to the nonresonant width.
These graphs show that the electron density at the center of the
discharge is larger for 3-cm resonant gap than for 10-cm nonres-
onant gap. Note, if the power transfer efficiency, or the surface
impedance were the same, then the total power transferred into
the plasma were also the same and plasma densities were equal,
due to energy balance. In our case, the surface impedance for
3-cm gap is considerably higher, what corresponds to the higher
plasma density.

The electron energy distribution function and the diffusion
coefficient in energy space are shown in Fig. 5(b). Fig. 5(b)
shows that the energy diffusion coefficient is larger for 3-cm
gap than for 10-cm gap for electron energy less than 15 eV. This
results in more effective electron heating, leading to the larger
plasma resistivity shown in Fig. 21.

The steady-state electron energy distribution function is gov-
erned by following processes: the collisionless electron heating
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Fig. 6. Self-consistent simulations for coil currents I = 1 A=cm and
I = 5 A=cm and the given discharge parameters: P = 3 mtorr,
!=2� = 6:78 MHz. Shown are: (a) the plasma surface resistance; (b)
the electron temperature in the discharge center versus the discharge gap; and
(c) the electron bounce frequency [6].

in the RF electric field, inelastic collisions with neutrals, and
redistribution of energy among plasma electrons due to elec-
tron–electron collisions. We see in Fig. 5(b) that the EEDF shape
is similar to the two-temperature EEDF [4] with the temperature
of the tail of the distribution being lower than the temperature
of the main body of the EEDF, corresponding to the onset of
inelastic collisional losses. For 3-cm gap, corresponding to the
bounce resonance condition, the electron temperature of low-
energy electrons (less than excitation potential 11.5 eV) is much
higher than for 10-cm nonresonant gap. This effect is similar to
the plateau formation on the EEDF governed by collisionless
heating in the finite range of electron energies [22], [37]. Under
conditions of Fig. 5, this plateau is not well pronounced, because
it is smeared out by electron–electron collisions.

Additional simulations have been performed for the twice
lower discharge frequency: 6.78 MHz. Fig. 6(a) shows the re-
sult of self-consistent simulation of the plasma surface resis-
tance for two coil currents, 1 and 5 A/cm. For lower discharge
frequencies, the first bounce resonance corresponds to larger

. Correspondingly, the maximum of plasma surface resistance
shifts toward larger , compare Fig. 4(a) and Fig. 3. However,
the positions of the surface resistance maxima are different for
different coil currents. This is due to the different plasma den-
sity and correspondingly skin depth in the two cases. The larger

Fig. 7. EEDFs for the bounce resonance discharge gap length, L = 9 cm ,
and for nonresonant discharge gap L = 15 cm , for the surface current I =

1 A=cm, and other conditions are the same as in Fig. 7.

coil current transfer a larger power into the plasma, which re-
sults in a higher plasma density. For example, for the condition
of Fig. 6(a): and for 1 and 5
A/cm, respectively. due to
and , where is the Bohm velocity and
is the ionization price [1]. The higher plasma density, in turn,
leads to the smaller skin depth. Further, it follows from (4) and
(2) that the electron heating is maximal if two conditions are
met: the electron velocity kick is large for electron en-
ergies corresponding to the first bounce resonance ,
and the fraction of the resonant electrons satisfying the bounce
resonance condition is not small. The velocity kick amplitude

is maximal if transit time through the skin layer is ap-
proximately equal to , i.e., (transit resonance).
Combining the transit resonance condition with the first bounce
resonance condition estimated in uniform plasmas,
yields . As it is shown in Fig. 1 and Fig. 6(c), the frac-
tion of the resonant electrons is not small if , where

is the thermal velocity. Thus, the resulting rate of the elec-
tron heating depends on both transit and bounce resonances and
is maximal when the both resonances are satisfied simultane-
ously, which occur at . Correspondingly, for larger dis-
charge currents, the skin layer length is smaller and the posi-
tion of the surface resistance maximum shifts into the region of
smaller discharge gaps, as evident from Fig. 4(a). Similar results
have been obtained in numerical simulations in [31] (see Fig. 2
of that paper).

Fig. 6(b) shows the electron temperature versus the discharge
gap. Note, that our calculations show that the electron tempera-
ture grows with the increase of the discharge gap for small . It
differs from the predictions of the global model [1], [2] based on
the Maxwellian EEDF and particle balance ,
where is the ionization frequency and is the loss fre-
quency. The difference is due to non-Maxwellian shape of the
EEDF for the conditions of Fig. 6.

The electron energy distribution functions for 6.78 MHz are
plotted in Fig. 7 for the surface current 1 A/m and for two dif-
ferent lengths, resonant 9 cm and nonresonant 15 cm. The phe-
nomenon of plateau-formation on the EEDF is clearly seen for
the bounce resonance condition for cm.
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Fig. 8. (a) Self-consistently predicted non-Maxwellian (solid lines) and
Maxwellian (dashed lines) electron energy distribution function (EEDF) as
a function of total energy for 1 mtorr. (b) Energy diffusion coefficient [(2)]
D (") (solid line) and energy diffusivity (see text) related to e–e collisions
(dashed line) as a function of total energy for 1 mtorr. Inset shows an expanded
scale for D (") [30], [40].

D. Comparison of Plasma Parameters With Maxwellian and
Non-Maxwellian EEDFs

Here, the plasma properties, simulated using non-equilibrium
(non-Maxwellian) and equilibrium (Maxwellian) EEDFs, are
presented. It is shown, that the calculated plasma parameters
can be drastically different for different EEDFs used. It suggests
that the realistic plasma simulations must necessarily include
the self-consistent treatment of nonequilibrium EEDF.

Results in Figs. 8–11 are for a pressure of 1 mtorr, discharge
frequency of 13.56 MHz and discharge length 5 cm [30], [40].
Under these conditions the electron collision frequency is small
compared to theappliedfield frequency. Ineachcase,profilescal-
culated using the non-Maxwellian EEDF (solid lines) are com-
pared with profiles (dashed lines) obtained using the Maxwellian
EEDF approximation (see [30]and [40] under the same discharge
conditions and for the same (integrated) total power. Values of
power correspond to a plate cross sectional area of 64 cm.

Fig. 9. Effective temperature profiles for a non-Maxwellian EEDF (solid lines)
and a Maxwellian EEDF (dashed lines) for 1 mtorr [30], [40].

Fig. 8(a) shows the EEDF as a function of total energy for
non-Maxwellian (solid lines) and Maxwellian (dashed lines)
cases. The non-Maxwellian EEDF has a higher fraction of elec-
trons just beyond the ionization threshold, predicting a higher
ionization rate. For a pressure of 1 mtorr, the electron collision
frequency s and . The energy diffusion
coefficient of (2), exhibits a “knee” at 1 V [Fig. 4(b)],
indicating that the “temperature” of electrons with energies less
than 1 V is lower than that of electrons with energies greater
than 1 V. The “knee” in Fig. 4(b) arises due to a phenomenon
called “bounce heating” or “resonant heating.” For ,
the energy diffusion coefficient in (13) can be approximated as

(6)
where, represents the Dirac-delta function. It
can be seen from (6) that for energy (where is ob-
tained from , ). For (where

), , i.e., the energy diffusion
coefficient increases linearly with total energy. This behavior
leads to the “knee” observed in Fig. 8(b), and implies that elec-
trons with energy (in this case is 1 V) are in resonance with
the field and are thus heated more efficiently. Higher order reso-
nant modes contribute less as the Fourier coef-
ficients of the electric field decrease as increases. The dashed
line in Fig. 8(b) shows the dependence on total energy of the e–e
collision diffusivity term [given by in (1)].=m

Fig. 9 shows the screaning temperature profiles given by
(28) for the Maxwellian and non-Maxwellian EEDFs. For the
Maxwellian case, the electron temperature is independent of
power while for the non-Maxwellian case, significant differ-
ences are observed with power. The large difference between
the temperatures at the edge and the center may be explained
by examining Fig. 8(a) (solid lines). The EEDF shows that
electrons with total energies less than 1 V are not effectively
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Fig. 10. Normalized amplitude of the RF field for 1 mtorr. Results using non-
Maxwellian EEDF (solid lines) are compared with results using Maxwellian
EEDF (dashed lines), under otherwise identical conditions [30], [40].

heated. Electrons with such low energies are essentially trapped
near the discharge center (where the heating field is weak)
as they cannot overcome the electrostatic potential barrier.
Hence, the effective temperature at the center is low. In con-
trast, electrons with relatively high energies can overcome the
potential barrier and reach the edge where the field is strong,
and the effective temperature at the periphery (and larger total
energies) is high. Note that even for the highest plasma density
in Fig. 4, the electron–electron mean free path is about 10
m for 1 eV electrons, much higher than the interelectrode
gap. Therefore, the electron–electron and collisionless energy
diffusion coefficients are comparable at very low energy, 1 eV,
see Fig. 4. As a result, low energy electrons form a Maxwellian
distribution with very low temperature, 1 eV. Note that the part
of the EEDF corresponding to such cold electrons is difficult
to measure experimentally. The effective temperature profile
becomes less nonuniform as power is increased, because of
higher electron density resulting in more “thermalization” of
the distribution by e–e collisions. The discrepancy between the
Maxwellian temperature and the effective temperature near the
edge induces a difference in the effective electron mean free
path, which leads to considerably different field and current
density

Fig. 10 shows the profiles of the normalized amplitude of the
RF field. The field profile is monotonic for low power. How-
ever, for high power, the behavior becomes progressively non-
monotonic due to increasing nonlocality. Specifically, the skin
depth decreases with power, and the more energetic electrons
can escape from the skin layer during a RF cycle, resulting in
nonlocal behavior and nonmonotonic RF field profiles. The ef-
fect of nonlocality is more pronounced for the non-Maxwellian
EEDF, especially for higher powers for which the RF field at the
discharge center is more than 50% of the value at the edge. This
is a direct consequence of the higher effective temperature pre-
dicted by the non-Maxwellian EEDF near the edge compared
to the Maxwellian case. Warmer electrons can reach further in

Fig. 11. Power density profiles for 1 mtorr. Results using non-Maxwellian
EEDF (solid lines) are compared with results using Maxwellian EEDF (dashed
lines), under otherwise identical conditions [30], [40].

the discharge core. The corresponding power deposition pro-
files are shown in Fig. 11. The peak of power deposition in the
Maxwellian case is seen to occur closer to the boundary, when
compared to that of the non-Maxwellian case. This is because of
the higher effective temperature of electrons in the skin layer for
the non-Maxwellian case, which causes them to travel a greater
distance during an RF cycle. Both cases exhibit negative power
deposition near the discharge center. This can be explained by
the phase difference between the current and the RF field; elec-
trons can pick up energy from the field within the skin layer
and lose energy back to the field outside the skin layer. Neg-
ative power deposition has been observed experimentally for
low-pressure inductively coupled discharges [16].

The corresponding positive ion density profiles are shown in
Fig. 12. The positive ion density is determined by two factors: 1)
the effective electron temperature at the boundary, which con-
trols the loss rate of ions to the wall and 2) the rate of ion-
ization (ground-state and metastable) [30], [40]. The latter de-
pends on the tail of the EEDF beyond the ionization threshold of
15.76 V (ground state ionization dominates under these condi-
tions). The ionization rate was found to be marginally higher for
the non-Maxwellian EEDF. However, the effective temperature
at the wall for the non-Maxwellian case (6.5 V) is larger than
the Maxwellian temperature of 4.4 V (Fig. 9), leading to larger
losses for the non-Maxwellian EEDF. This results in lower den-
sity for the non-Maxwellian case. The differences in the peak
densities are 32.4%, 38.8%, and 44.4 %, respectively, for 50,
100, and 200 W.

III. SELF-CONSISTENT TREATMENT OF LOW-MAGNETIZED

ICP PLASMA

Application of a weak constant external magnetic field to
low-pressure bounded plasma can drastically changes its elec-
trodynamics, due to possibility of the electron–cyclotron reso-
nance (ECR), when , and the appearance of the new
propagating wave modes for . These can result in more
effective power transfer into plasma and possible transmission
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Fig. 12. Variation of ion density for 1 mtorr. Results using non-Maxwellian
EEDF (solid lines) are compared with results using Maxwellian EEDF (dashed
lines), under otherwise identical conditions [30], [40].

resonances (when the induced plasma field is close to one of
the Fourier harmonics) [8]–[12]. Here, is the RF driving fre-
quency and is the electron cyclotron frequency
( is the electron charge, is the electron mass, and is the
magnetic field induction). A description of a fast self consis-
tent treatment of a weakly-magnetized plasma and investiga-
tions of plasma parameters under resonance conditions are the
main topics of this section.

A. Basic Equations

The system under consideration assumes a 1-D slab geometry
ICP discharge of a plasma bounded on both sides by two par-
allel walls with a gap length . For the case of the cylindrical
like geometry (two current sheaths), both walls carry prescribed
currents, produced by an external RF source, flowing in oppo-
site directions, and for the case of one grounded electrode: one
of the walls is grounded, correspondingly.

The external magnetic field is applied perpendicularly to
the discharge plates, as it is shown in Fig. 13. The induced
solenoidal RF electric field and is directed along the
walls and the static ambipolar electric field of the ambipolar
potential is directed towards the discharge walls, keeping
the plasma quasi-neutral, . In the present treat-
ment of high density discharge plasmas cm ,
the sheath width is neglected, because it is of the order of a few
hundreds of microns, much less than the discharge dimension

. Furthermore, it is assumed that the plasma electrons experi-
ence specular reflection: 1) from the discharge walls when they
have total energy larger than the potential at
the walls , and 2) from the geometrical location of the turning
points when the the plasma electrons are confined
into the potential well . The 1-D slab geometry system of
two surface currents flowing in opposite directions provides a
good description of a solenoidal discharge with diameter
[27], [38] and also describes approximately a “pancake” geom-
etry with one coil at and a grounded electrode at

Fig. 13. 1-D model of magnetized ICP. The external magnetic field goes per-
pendicularly to walls. RF electric field has also a component along z axis. (Color
version available online at http://ieeexplore.ieee.org.)

(corresponding to the boundary condition at )
[28]. In this paper, we preferentially use the 1-D slab geometry
of two surface currents (if it is not stated otherwise), because
the analytical solution in this case is much simpler and easier
to analyze, while results are similar to the just mentioned con-
figurations for typical plasma parameters (see Appendix A for
details). As for nonmagnetized plasmas, the correspondence be-
tween 1-D geometry , of Fig. 13 and the realistic cylindrical
configuration is: , ( and ).

In order to describe the discharge self-consistently, one needs
to determine the induced RF electric field profiles ,
EEDF , and the plasma density profile, or corresponding
ambipolar potential . The detailed description of all the
needed formalism for nonmagnetized discharges is given in
[28]. A short account of the formalism, that is applicable to
the magnetized plasmas (which is the straightforward general-
ization of the formalism for the nonmagnetized case) is given
below.

B. Calculation of the EEDF

For the case of low-pressure, low-temperature discharges,
when an energy relaxation length is large comparing to the
plasma width and an energy relaxation time is large com-
paring to the RF period, the electron velocity distribution
function (EVDF) can be represented as a sum of a main
isotropic part (EEDF), that is a function of only the
total energy , and of a small alternating anisotropic part

, [29], [34], [36], [39].
The Boltzmann equation for the electron velocity distribu-
tion function, after applying the formalism of quasi-linear
approach can be split into two equations (see Appendix B),
one for the EEDF , and the other for (used for
calculation of the energy diffusion coefficient and the nonlocal
conductivity operator). Note, that the EVDF can be represented
as two-term expansion if the RF-quiver
velocity is much less than the thermal velocity ,
or [28]. For , it
yields . As a consequence, our approach
is valid only if the ponderomotive potential can be neglected
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(see, also, Appendix B). The description of effects of the RF
magnetic field and ponderomotive force on the low-frequency
ICP can be found in [3].

The final equation for the electron energy distribution func-
tion is

(7)

Here, the bar denotes averaging according to (82), and is
the inelastic collision frequency. The coefficients , ,
stem from the elastic and electron–electron collision integrals,
respectively, and are given by [29], [35], [39]

(8)

(9)

(10)

(11)

where is the electron kinetic energy, is the
Coulomb collision frequency, and is the Coulomb loga-
rithm.

The energy diffusion coefficient responsible for the electron
heating is given by

(12)

Note that the expression for explicitly accounts for the
Doppler shifted electron–cyclotron resonance

. The dependence of electron plasma heating on resonant elec-
trons especially pronounced for the , as in this case

(13)

where is a Dirac delta function. It is worth to note that if
, the summation in (13) goes into integration over corre-

sponding wave vectors , and the above mentioned resonance

condition transforms into the well-known ECR resonance con-
dition for continuous wave spectrum .

C. Calculation of the RF Electric Field

The transverse RF electric fields is obtained from a single
scalar equation

(14)
where is the wall current ( for one grounded elec-
trode, and for two current sheaths) and are the
induced electron plasma current densities that can be calculated
knowing the anisotropic part of the EVDF

(15)

which can be rewritten after some transformations as

(16)
where

(17)

After mathematical continuing of the RF field outside of the
slab as , and using the Fourier series

(18)

and

(19)

the (14) yields

(20)

(21)

where is an integer, for cylindrical ge-
ometry and for one grounded electrode,
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, and we introduced the generalized plasma di-
electric function

(22)

where the coefficients are the temporal Fourier trans-
form of in the bounce motion of an electron in the po-
tential well

(23)

The coefficients can be effectively computed using the
Fast Fourier Transform (FFT) method.

The Maxwell (20) together with the equations for the electron
currents (21) and (23) comprise the complete system for deter-
mining the profiles of the RF electric field.

D. Calculation of the Electrostatic Potential

The electrostatic potential is obtained using the quasi-neu-
trality condition

(24)

where is the electron density profile and is the ion
density profile given by a set of fluid conservation equations for
ion density and ion momentum [30], [40]

(25)

and

(26)

where is the ionization rate, is the ion–neutral collision
frequency and , , are ion density, velocity, and mass,
respectively.

Equation (24) is solved in the form of a differential equation
[20]

(27)

where is the electron screening temperature

(28)

and the electrostatic ambipolar potential can be obtained by in-
tegration of (27).

IV. DISCUSSION

The above described self-consistent system of equations
gives a working tool for efficient, fast simulations of 1-D
inductively coupled magnetized plasmas.

The total power deposited into plasma per unit square of side
surface can be computed as [1]

(29)

Also, the total deposited power is related to the electron energy
diffusion coefficient as [28]

(30)

The agreement of the total power computed from (29) and (30)
can be used as a good consistency check for the above described
formalism during the numerical simulations.

For the sake of further analysis, it is convenient to express
the deposited power as a function of the plasma resistance, or
the real part of the plasma impedance , that is defined as

(31)

where and are the electric and magnetic field at
the current sheath for the right and left polarized waves. The
power deposited into plasma is related to the plasma impedance
as

(32)

where is the effective amplitude of the sheath current [1].
The surface impedance also can be used to estimate the skin

depth

(33)

Using (14), one obtains and the skin
depth (33) becomes

(34)

For a purely inductive impedance, is a real number, but in the
general case is complex. Eq. (34) is accurate only for a purely
exponential profile of the electric field . If the elec-
tric field profile is more complex (e.g., two length scales), cal-
culation of the entire profile of the RF electric field is necessary,
see [32] for an example.
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A. Analysis With a Given Maxwellian EEDF

For uniform plasmas with Maxwellian EEDF our formalism
for calculation of the RF electric field [(20), (21), (23)] sim-
plifies considerably. In this case, the surface impedance of a
1-D, bounded, uniform plasma of length inductively driven
by two current sheets with an applied external static magnetic
field reads [28], [33]

(35)

where

(36)
Here, we introduce the anomalous skin depth

(37)

where is the electron plasma frequency
and is the “standard” plasma dielectric function

(38)

In the limit of a semi-infinite uniform plasma, , the
summation turns into an integral with , and (36)
yields

(39)

The expression for the plasma surface resistance following
from (36) is given by

(40)
where .

As it can easily be seen from the dispersion equation for the
cold collisionless plasma [1]

(41)

for (where, is the electron plasma frequency),
application of external magnetic field gradually changes the

Fig. 14. Electric field profiles normalized by the electric field E(x = 0; B =
0): (a) amplitude and (b) phase for different values of applied magnetic field for
a uniform, bounded plasma. Plasma parameters are: half plasma length L=2 =
10:5 cm, RF field frequency !=2� = 29 MHz, electron temperature T =
4 eV, electron collision frequency � = 1:2 10 s , and the plasma density
n = 10 cm [33]. (Color version available online at http://ieeexplore.ieee.
org.)

plasma electrodynamics from the nonwave propagating regime
(evanecent waves) for , to the regime of propagation
of the right-hand circularly polarized wave (with
the minus sign in the denominator of the (41) and with phase
velocity less than the speed of light).

For the warm, collisional plasma, the main features of the
above picture remain the same. The electric field profiles for dif-
ferent values of the applied magnetic field are plotted in Fig. 14.
A transition is evident from the non-propagating
to the propagating wave. Here, magnetic field

(42)

corresponds to ECR for a 29 MHz discharge. The
electric field profile changes from almost exponential in the
evanescent regime to a wave pattern
[12], [33]. For , a standing wave forms which cor-
responds to the Fourier-harmonic with the wave vector

.
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B. Nonpropagating Regime and Electron–Cyclotron
Resonance

In the warm plasma, the nonpropagating regime is described
by anomalous skin effect for , or by the regular
skin effect for , where is the
effective electron mean free path, and is the RF field pene-
tration depth. For , application of the external magnetic
field leads to increased RF wave dumping and, consequently, to
increased plasma resistance, due to gradual approach to the elec-
tron–cyclotron resonance. The electrons gyrating with the same
frequency as the driving frequency (with Doplerr shift correc-
tion) feel the field of the right-polarized wave as almost constant
and are effectively accelerated, resulting in enhanced heating,
as it follows from the (40). For , , and

is maximal which give the enhanced dumping if

(43)

The presense of the in the denominator of the (40), im-
plying the self-consistent effect of dumping on the RF electric
field, leads to Doppler shifting of the electron-cyclotrone reso-
nance condition

(44)

At the exact condition of the electron–cyclotron resonance
, the surface resistance of a collisionless plasma ,

with plasma slab length much larger than the anomalous skin
depth , can be calculated from (39) (taking into account that at
ECR and ). For the right-hand
polarized wave

(45)

Equation (45) predicts larger plasma surface resistance at
the electron–cyclotron resonance with increasing RF field
frequency and RF field penetration depth. The latter can
occur either due to increase of electron temperature or decrease
of plasma density.

C. Propagating Regime and Transmission Resonances

For the propagating regime increased plasma resistance, also,
can take place, but due to a different mechanism—the possible
transmission resonance [12], [33]. Increasing the external mag-
netic field above the ECR condition ( G for 29 MHz)
leads to further growth of the plasma surface resistance, as ev-
ident in Fig. 15. This is due to propagation of the right-hand
polarized wave into the plasma. Analysis of the wave propaga-
tion is especially convenient in the cold plasma approximation.
In the limit of high magnetic field, warm plasma effects are not
important if

(46)

i.e., if the nonlocality length is small, .
Substituting the cold plasma limit of the dielectric function

for gives the poles of the electric
field in (40)

(47)

For a typical magnetically enhanced ICP , , and
propagating modes exist only for the right-hand polarized wave
with a wave vector

(48)

For a bounded plasma, transmission resonance occurs if an odd
number of half-waves equals the plasma slab length, or ,
which gives

(49)

Warm plasma effects can be neglected for not very high reso-
nance numbers , for which the nonlocality length is less than
the wavelength .

Strong transmission resonances at the values of the magnetic
field predicted by (49) are evident in Fig. 15. Note that the
transmission resonances occur at different values of magnetic
field for different plasma slab lengths. When (46) is satisfied,
the surface resistance of cold plasma is the same as that of
warm plasma. In the opposite case, transmission resonances are
less pronounced due the wave dissipation through collisionless
damping. The maximum value of the plasma surface resistance
and the width of the transmission resonances are determined
by a small dissipation, either due to collisional or collisionless
damping described by . Note that a right-hand polar-
ized wave reflects from a plasma-vacuum interface with a re-
flection coefficient . Since ,
and the wave is trapped inside the plasma.

Let us now estimate the condition of existence of transmission
resonances. Warm plasma effects can be neglected if

. Substituting from (48) gives the minimum value of
for a pronounced transmission resonance

(50)

Substituting in turn from (50) into (48), gives the max-
imum value of the wave vector for a pronounced transmission
resonance

(51)

That is, the wave length should be much longer than the anoma-
lous skin effect length. This condition provides that the colli-
sionless damping of the wave is small.
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Fig. 15. Surface resistance of semi-infinite and bounded plasmas of different
lengths as a function of the applied magnetic field for a uniform plasma with a
Maxwellian EEDF. Discharge frequency is 29 MHz, the plasma density n =

10 cm and the electron collision frequency � = 1:2 10 s . (a) Warm
plasma with the electron temperature T = 4 eV. (b) Cold plasma with the elec-
tron temperature T ! 0 (local approximation for electron current) [33].(Color
version available online at http://ieeexplore.ieee.org.)

In addition, (49) suggests that the minimum value of the
plasma slab length to observe a pronounced transmission
resonance should satisfy the relation

(52)

For short plasma lengths or low plasma densities, (52) is not sat-
isfied and the transmission resonances are not observed. Fig. 16
shows the surface plasma resistance of warm bounded plasmas
for different electron densities. When the electron density is less
than cm , (52) is not satisfied and transmission res-
onances are not observed. As a result, the plasma surface resis-
tance decreases with increasing applied magnetic field for mag-
netic fields larger than . The disappearance of the transmis-
sion resonances for small lengths cm is shown at Fig. 17.

Strong transmission resonances may cause difficulty in cou-
pling power to the plasma through a matching network, as was
reported in [8] for magnetic fields . These values of
magnetic field appear to result in transmission resonances for
the experimental plasma parameters in [8].

As evident in Fig. 15, increasing the length of a bounded
plasma leads to a larger number of transmission resonance
peaks. In the limit , these peaks overlap and the plasma
surface resistance reaches an asymptotic curve. Substituting the
cold plasma limit for the dielectric function
as and integrating (39) over the poles of the electric
field, , given by (48) yields the asymptotic value of the
plasma surface resistance

(53)

Also, it can be seen from Fig. 15 that for given magnetic field
for the increase of the plasma length leads to ap-

Fig. 16. Surface resistance of warm bounded uniform Maxwellian plasmas for
different electron densities as a function of the applied magnetic field. Discharge
parameters: RF field frequency !=2� = 29 MHz, electron temperature T =

4 eV, electron collision frequency � = 1:2 10 s , and the plasma half-length
L=2 = 10:5 cm [33]. (Color version available online at http://ieeexplore.ieee.
org.)

Fig. 17. Plasma resistance as a function of the applied magnetic field for dif-
ferent gap lengths and a given Maxwellian EEDF for the case of two current
sheaths. Discharge parameters: the RF field frequency !=2� = 29 MHz, the
electron temperature T = 4 eV, the electron density n = 10 cm , and
the gas pressure P = 3 mtorr. (Color version available online at http://iee-
explore.ieee.org.)

proaching by the surface resistance to its value for the semi-in-
finite plasma. This value, again, can be analytically described as
the overlap of the multiple transmission resonances, broadened
due to collisionless dumping or collisions (compare the cases
of warm and cold plasmas in Fig. 15. The condition on plasma
length for applicability of the limit of a semi-infinite plasma is
that the width of resonance is larger than the distance be-
tween them

(54)

From (36), it follows that the distance between resonances is

(55)
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Also, from (36), it follows that the width of a resonance is

(56)

Indeed, from (36) for the real part of surface impedance follows
that the width of the resonance is given by

(57)

Representing , where is the root of the left
hand of inequality in (58) and taking into account that
and (when condition in (51) is valid), (58)
easily yields (56) for .

Substituting (56) for and (55) for into (54) gives

(58)

This condition corresponds to strong dumping of the propa-
gating wave on distance . It follows from the form of
the dispersion equation for the propagating wave in
unbounded plasma, which reads

(59)

If wave dumping is weak, i.e., , than the imag-
inary part of the wave vector is small compared with the wave
vector , and from (48). The wave
damping rate can then be easily obtained by equating the real
and imaginary parts of (59), which for yields

(60)

where is from (56).

D. Nonuniform Plasma

The electron–cyclotron and cavity resonance heating is, es-
sentially, a wave–particle resonance type heating. It follows that
the heating of the both types highly depends on the number of
the resonant electrons, or electrons for which the resonant con-
ditions are satisfied ( for ECR, and (41) with

for cavity resonance), but the actual form of the
ambipolar electrostatic potential can greatly alter the number of
present resonant electrons, that, in turn, can greatly affect the
resonant heating.

In Fig. 18, the results of the numerical simulations of the de-
pendence of the plasma resistance on applied field are pre-
sented, for a given Maxwellian EEDF, uniform and nonuniform
plasmas (with and without an ambipolar potential). The case of
the one grounded electrode was considered. It is seen that the
plasma resistivity is considerably enhanced at the electron–cy-
clotron resonant conditions , which means the

Fig. 18. Plasma resistance as a function of the applied magnetic field for uni-
form plasma (without an ambipolar potential) and for nonuniform plasmas (with
�(x) = 4� (2x=L� 1) eV and �(x) = 4� (2x=L� 1) eV) for a given
Maxwellian EEDF. Case of one grounded electrode. Discharge parameters: RF
field frequency, discharge electron temperature, and the peak electron density
are the same as in Fig. 1. Gas pressure P = 3 torr and the discharge gap is
L = 10:5 cm. (Color version available online at http://ieeexplore.ieee.org.)

larger number of the resonant electrons due to the presence
of the ambipolar potential. The effect of enlargement of the
number of resonant electrons in the nonuniform plasma at the
bounce resonance condition was reported by authors in [6]. The
main idea of it that the plasma electrons of different energies,
bouncing in the ambipolar potential of a nonuniform plasma,
have smaller spreading in a bounce frequency, comparing to the
case of a uniform plasma. And if this frequency matches the res-
onant condition, it immediately gives a larger number of reso-
nant electrons. For example, the plasma electrons of all energies
bounce with the same frequency in the quadratic ambipolar po-
tential. The condition of ECR for a bounded plasma, as it follows
from the expression for the energy diffusion coefficient (13), is

. It includes the bounce frequency and can be
greatly affected by the ambipolar potential.

For the cavity resonance Fig. 18 reveals the
lower plasma resistivity for nonuniform plasmas which can be
attributed to the higher dumping in this case, caused by more
resonant electrons (violations of the necessary condition [(46)].
It needs to be accentuated that non accounting for the elec-
trostatic ambipolar potential (allowing electrons to bounce be-
tween walls that constrain plasma), as it is often done for sim-
plicity, can results in erroneous description of plasma behavior
at resonant conditions, due to aforementioned drastic influence
of the electrostatic potential on the plasma heating.

V. RESULTS OF FULL SELF-CONSISTENT CALCULATIONS OF

THE DISCHARGE PARAMETERS

To investigate the dependence of the parameters of a mag-
netized discharge on the magnitude of the applied magnetic
field, the full self-consistent simulations of the driving sheaths
current (corresponding to coil current in two-dimensional (2-D)
geometry), EEDF, RF electric field, plasma density, electron
temperature, and ambipolar potential for a fixed deposited
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Fig. 19. Sheath current as a function of the applied magnetic field for full
self-consistent discharge simulations for different deposited powers and gas
pressures. The case of one grounded electrode. Discharge parameters: RF field
frequency!=2� = 29MHz, the discharge gapL = 10:5 cm, and the discharge
cross section S = 64� cm . (Color version available online at http://iee-
explore.ieee.org.)

power have been performed for the case of one grounded elec-
trode. Simulations described in this chapter were performed
in order to compare the developed code with the data recently
measured by Godyak et al. and given in [8]. All calculations
have been done for 29 MHz driving frequency and for the values
of the applied magnetic field from 0 to 20 G (for the
discharge is impossible to maintain due to macroscopic plasma
instability [8]). The length and side area of the discharge was
chosen 10.5 cm and cm correspondingly.

Fig. 19 shows the dependence of the coil current on the
field for different given deposited power and pressures (corre-
spond to different transport collision frequencies). As it seen in
Fig. 19, the coil current has pronounced minima for
for low pressures , 3 mtorr and the shallow minimum
for mtorr. All these minima correspond to electron–cy-
clotron resonance, as it follows from (32) and the general be-
havior of the plasma resistance, given, for example, in Fig. 2.
For constant deposited power, increase and the maxima of the
plasma resistance correspond to decrease and minima of the coil
current. The shallowness of the coil current minima for

mtorr can be explained by collisional broadening. The same
reasoning can be applied to the minima for which
corresponds to the cavity resonance. All of them are deeper than
the corresponding ECR minima, because of larger plasma resis-
tance at the cavity resonance (Fig. 2).

The profiles of the energy diffusion coefficient and the elec-
tron energy distribution function are given in Figs. 20 and 21,
correspondingly. It is seen, that the largest electron energy dif-
fusion coefficient in the region of low energy eV is
for (corresponds to ECR). This results in more
effective electron heating, leading to a larger plasma temper-
ature, shown in Fig. 22. It suggests that at ECR condition the
electrons interact with RF wave in the most efficient way (the
damping rate is maximal), meanwhile at cavity resonance condi-
tions plasma effectively gets transparentfor some RF wave with
small dumping of it by plasma electrons and the larger part of
dissipated energy goes into the energy of the propagating wave.

Fig. 20. Energy diffusion coefficient as a function of the electron energy for
full self-consistent discharge simulations for different applied magnetic fields.
Case of one grounded electrode. Discharge parameters are the same as in the
Fig. 19. (Color version available online at http://ieeexplore.ieee.org.)

Fig. 21. Electron energy distribution function as a function of the electron en-
ergy for full self-consistent discharge simulations for different applied magnetic
fields. Case of one grounded electrode. Discharge parameters are the same as in
the Fig. 19. (Color version available online at http://ieeexplore.ieee.org.)

The steady-state electron energy distribution function is gov-
erned by following processes: the collisionless electron heating
in the RF electric field, inelastic collisions with neutrals, and
redistribution of energy among plasma electrons due to elec-
tron–electron collisions. We see in Fig. 21, that the EEDF shape
is similar to the two-temperature EEDF [4], with the tempera-
ture of the tail of the distribution being lower than the tempera-
ture of the main body of the EEDF due to the onset of inelastic
collisional losses. The EEDF corresponding to the electron–cy-
clotron resonance is enriched by hot electrons due to
the most effective heating and due to the largest rate of damping
at the electron–cyclotron resonance.

The peak electron density (the density at the center of the
discharge) as a function of the external magnetic field is plotted
in Fig. 23 for different gas pressures and deposited powers. It is
seen, that the minima of the electron density corresponds to the
condition of electron–cyclotron resonance and, consequently,
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Fig. 22. Electron temperature at the discharge center as a function of the ap-
plied magnetic field for full self-consistent discharge simulations for different
deposited powers and gas pressures. Case of one grounded electrode. Discharge
parameters are the same as in Fig. 19. (Color version available online at http://
ieeexplore.ieee.org.)

corresponds to maxima of the electron temperature (Fig. 22).
For a constant deposited power, such a behavior of the plasma
density as a function of electron temperature can be explained
for 1-D geometry on the basis of the generalized power balance

, where and
are the Bohm velocity and the ionization price, respectively, and
both of them are proportional to the electron temperature .
From this balance, it is obvious that the increase of the electron
temperature for constant deposited power, inevitable, leads to
the decrease of the peak electron plasma density.

The spatial profiles of the induced RF electric field for
,10, 20 G that correspond to no magnetic field, ECR and cavity

resonance, respectively, are plotted in Fig. 24. The main features
of the wave propagation in the magnetized plasma, as decaying
of the RF field due to skin effect for (evanescence) and
the formation of the standing wave for (propagation)
are explicitly shown. The wave length of the propagating wave
for is (corresponds to the harmonic mode with

).
Figs. 21–24 depict the comparison of the calculated plasma

temperature, density, and RF electric field profiles with the cor-
responding experimental values of them from [8]. It is clearly
seen, that the simple 1-D ICP model of the present study, can de-
scribe with a reasonable accuracy the main properties of the real
discharge. The apparent discrepancies, especially for the plasma
density, can be attributed to the higher dimensionality of the ac-
tual discharge and are one of the our concerns for future work.

In conclusion, enhanced electron heating and larger plasma
densities (for a given current in the coil) can be achieved if
low-pressure ICP discharges are operated under the bounce res-
onance conditions. Self-consistent simulations of the discharge
plasma surface resistance and the electron energy distribution
function demonstrate the significance of explicit accounting for
the nonuniform plasma density profile and the correct form of
ambipolar electrostatic potential. Analysis of properties of a
weakly magnetized inductively coupled discharges clearly re-
veals the phenomena of the electron–cyclotron and cavity reso-

Fig. 23. Electron plasma density at the discharge center as a function of the
applied magnetic field for full self-consistent discharge simulations for different
deposited powers and gas pressures . Case of one grounded electrode. Discharge
parameters are the same as in Fig. 19. (Color version available online at http://
ieeexplore.ieee.org.)

Fig. 24. Spatial profiles of the RF electric field along the sheath current as the
functions of the discharge length for fully self-consistent discharge simulations
for different applied magnetic fields. Case of one grounded electrode. Discharge
parameters: RF field frequency !=2� = 29MHz, discharge gap L = 10:5 cm,
discharge cross-section S = 64� cm , gas pressure P = 10 mtorr,
and deposited power P = 200W. (Color version available online at http://
ieeexplore.ieee.org.)

nances. Enhanced plasma heating at the electron–cyclotron res-
onance and the increase of deposited power with the increase of
the applied magnetic field are demonstrated. The formalism de-
veloped in this work can be applied to many different problems
for the description of wave–particle interaction in nonuniform
plasmas.

APPENDIX A

If the effective mean free path

(61)

is small compared with the discharge gap , then two antennas
act independently and the total deposited power into plasma
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Fig. 25. Surface resistance as a function of a normalized electron–cyclotron
frequency. Solid lines correspond to Shaing formalism for one grounded elec-
trode with plasma length L. Dotted lines correspond to the case of two driving
electrodes with plasma length 2L. Shown: RF driving frequency (a) 29 MHz
(b) 13.56 MHz. Electron temperature T = 4 eV, electron collision frequency
� = 1:2 10 s . (Color version available online at http://ieeexplore.ieee.org.)

can be viewed as sum of two halves, which are exactly the
same as for one antenna at one plasma side and the grounded
electrode at another plasma side. Comparison between
two solutions is shown in Fig. 25. In Fig. 25, the plasma surface
resistance is calculated using Shaing’s formalism [13] for one
grounded electrode with plasma length , and utilizing much
simpler formalism of the two driving antennas with plasma
length 2 for typical plasma parameters. Apparently, agree-
ment between two cases is very good, if not excellent.

For references purposes, the Shaing’s formalism [13] for one
grounded electrode for magnetized plasma of length is given
by

(62)

(63)

where , and
.

APPENDIX B

The Boltzmann equation for the electron velocity distribution
function reads

(64)

(65)

where is the stationary electric field
due to the space charge, and are components
of the nonstationary RF electric field, and is the collision
integral. Note, the RF magnetic field drops out from (65) as

. In writing of the (65), the fact of
constancy of along the electron trajectory have been used:

(66)

After applying the formalism [22], [37] of the standard quasi-
linear theory, (65) splits into two equations: a linear one for

(67)

and a quasi-linear one for

(68)

Here, the bar denotes space-time averaging over the phase space
available to electrons with total energy [29], [34], [39].

Representing the RF electric field
and the anisotropic part of the

EVDF , as harmonic functions (where is
the discharge frequency), using the Bhatnagar–Gross–Krook
(BGK) approximation, [28], and omitting the
subscript 0 in the amplitudes, (68) can be rewritten as

(69)

where is the transport collision frequency,
is the total energy along the axis and is the
electron potential energy. The left-hand and right-hand polirized
RF fields, , and , are defined by the relations:

and . The electron cyclotron frequency
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is defined as and the qyrophase angle is such
that and .

After Fourier expansion of (70) with respect to the gyrophase
angle

other (70)

one can get the equations for

(71)

and

(72)

Equations (71) and (72) can be effectively solved by transfor-
mation to the variable angle of the bounce motion

(73)

where is half of the bounce period of the electron motion in
the potential well

(74)

Making use of the Fourier series

(75)

(76)

Equations (71) and (72) simplify to

(77)

and

(78)

where is the electron bounce frequency in
the potential well, and

(79)

Solving the above equations we arrive to the expressions for
the symmetrical part of as follows:

(80)

where

(81)

Knowing the symmetrical part of the anisotropic contribution
to the EVDF , one can average (68)
according to

(82)

(83)

and obtain the final (8) for the main part .
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