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Abstract
A methodology is developed to determine the bias voltage waveform needed to achieve a
desired (pre-selected) ion energy distribution (IED) on a substrate in contact with plasma. The
approach is applicable to collisionless sheaths at all radio frequencies. It combines a circuit
model with an equation for a ‘damped’ sheath potential to which ions respond. The
methodology is demonstrated by computing the rf voltage waveform required to achieve a
Gaussian IED with specified mean energy and energy spread on an electrode biased through a
blocking capacitor. This inverse problem has multiple solutions, i.e. there exists a multitude of
waveforms all producing the same IED.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Control of the energy of ions bombarding a substrate in contact
with plasma is critical for plasma processing. For example,
in reactive ion etching (RIE), the ion energy must be high
enough to drive anisotropic etching, but not too high as to
induce substrate damage and/or loss of selectivity. As device
dimensions continue to shrink, precise control of the ion energy
distribution (IED) becomes increasingly important. In atomic
layer etching, for instance, a monoenergetic ion flux is needed,
with a tightly controlled IED lying between the thresholds
of chemical and physical sputtering. Thus, not only the
mean energy but also the width of the IED function must be
controlled.

Application of a bias voltage to the substrate is the most
common approach to controlling the energy of bombarding
ions. For substrates in contact with a high density plasma
(collisionless sheath), application of a sinusoidal bias voltage
results in a bimodal IED [1–4]. The controlling parameter
is ωτi, with ω = 2πf , f being the applied frequency, and
τi being the ion transit time through the sheath. For low bias
frequencies, ωτi � 1, ions respond to the instantaneous sheath
voltage, and the IED is broad. For high bias frequencies,

ωτi � 1, ions respond to a time-average sheath voltage,
resulting in a narrow IED. The width of the distribution may
be decreased by increasing ωτi.

Other researchers controlled the IED by applying a bias
voltage to a separate electrode in contact with the plasma
[5–7]. Xu et al [7] obtained nearly monoenergetic IEDs by
the application of a dc bias to a ‘boundary electrode’. They
used a pulsed plasma and applied synchronous bias during
the afterglow resulting in narrow IED (FWHM ∼ few eV).
Wendt and co-workers [8–10] controlled the IED by applying
‘tailored’ voltage waveforms primarily under the condition that
ions respond fully to the instantaneous sheath voltage, i.e.
ωτi � 1. Computations and experiments showed that both
monoenergetic and two-peaked IEDs with controlled energies
could be obtained. A similar approach was used in [11],
where the effect of substrate charging on the required voltage
waveform was addressed. Agarwal and Kushner [12] and Rauf
[13] investigated computationally the effect of non-sinusoidal
bias voltage waveforms on the IED. The etch selectivity could
be controlled by adjusting the width and mean energy of
the IED.

In this work, a general methodology is developed to
determine the voltage waveform that must be applied to
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Figure 1. Left: periodic sheath voltage profile V (ωt) given by equation (3). Right: resulting IED f (y) given by equation (4).

an electrode in contact with plasma to achieve a desired
(pre-selected) IED. This is the inverse problem. Although the
forward problem (that of finding the IED for given plasma
conditions and applied rf voltage waveform) has been studied
for the past several decades [1–4, 14–20], the inverse problem
has come to the forefront only recently. The methodology
developed here is applicable to both low (ωτi � 1) and high
frequencies (ωτi � 1) of the applied rf voltage.

2. Ion energy distribution

When ions respond to the applied field (ωτi � 1), and there
are no collisions in the sheath, the IED is found directly
from the sheath voltage V = V (ωt) using equation (1), (see
appendix A). Here f (y) is the IED as a function of ion
energy, y.

f (y) = 1

2π

∑
# of points in 0 < ωt < 2π

such that V (ωt) = y

1∣∣∣ dV
d(ωt)

∣∣∣ . (1)

This is a generalization of equation (31) in [1]. Eliminating
the phase angle ωt in favor of y results

f (y) = 1

2π

∑
# of points in 0 < ωt < 2π

such thatV (ωt) = y

∣∣∣∣dV −1(y)

dy

∣∣∣∣. (2)

Here V −1(y) is the inverse function, i.e. y = V (ωt) ⇒ ωt =
V −1(y). If ions do not respond to the applied field, then
V (ωt) in the expressions above is the sheath voltage ‘seen’
by the ions (hereafter referred to as ‘damped’ sheath voltage
or ‘damped’ sheath potential). It is understood that the ion
energy corresponding to voltage V (in volts) is in units of eV.

2.1. The forward problem

The forward problem consists of determining the IED for given
plasma and boundary conditions. For example, what is the
IED on a substrate on which a given voltage waveform Vrf is
applied? To solve this problem, one has to determine the sheath
voltage waveform ‘seen’ by the ions, before using equation (1)

to find the IED. A way to find the damped sheath voltage is
described later in the paper.

As an example, let us assume that an applied Vrf results in
a damped sheath voltage waveform (not necessarily the actual
sheath voltage), given by

V (ωt) = Vm + V0 sin ωt,

|Vm| > V0, Vm < 0, 0 < ωt < 2π (3)

whereVm is the average (mean) voltage, andV0 is the amplitude
of the sinusoidal term.

Direct application of equation (2) yields

f (y) = 1

2π

∑
# of points in 0 < ωt < 2π

such that V (ωt) = y

∣∣∣∣∣d sin−1[(y − |Vm|)/V0]

dy

∣∣∣∣∣
or

f (y) = 1

π

1

V0

√
1 −

(
y−|Vm |

V0

)2
. (4)

One can verify that the integral over the distribution given
by equation (4) is unity, i.e. f (y) is normalized. The sheath
voltage and the resulting IED are shown in figure 1. The
IED displays the characteristic bimodal shape [1–4]. It should
be noted that measured IEDs have ‘smeared’ peaks because
of limited resolution of the ion energy analyzer and/or a
distribution of energies of ions entering the sheath.

2.2. The inverse problem

The inverse problem is the following: given a desired IED (e.g.
a Gaussian IED with prescribed mean energy and FWHM),
determine the voltage waveform Vrf that must be applied to
yield that IED. To solve this problem, one would first use
equation (2) to solve for V (ωt) based on the given IED, f (y);
see examples 1 and 2. This would be the sheath voltage to
which ions respond. Then, one would need to determine the
actual sheath voltage, and finally the required Vrf , as detailed
later in this paper.
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Figure 2. Family of voltage waveforms parametrized by x
(0 < x < 1) that result in the IED of equation (4). For the
waveforms shown, x = 0.1 (solid line), 0.4 (dashed line) and 0.7
(dotted line). The voltage waveform of figure 1 (left), shifted by 1/4
phase, is recovered for x = 0.5.

Example 1. As an example, consider the IED of equation (4).
The sheath voltage that ions must ‘see’ to yield this IED is (see
appendix B)

V (ωt) = V0 sin

(
1

2x
ωt − π

2

)
+ Vm (5)

for 0 < ωt < 2xπ , and

V (ωt) = V0 sin

( −1

2(1 − x)
ωt +

π(1 + x)

2(1 − x)

)
+ Vm (6)

for 2xπ < ωt < 2π where x is a parameter 0 < x < 1.
Figure 2 shows a family of voltage waveforms each resulting in
the IED of figure 1. Clearly the inverse problem has multiple
solutions, i.e. there is a multitude of voltage waveforms all
resulting in the same IED.

V (ωt) in equations (5) and (6) is the sheath potential that
would result in the IED of equation (4), if ions were to respond
fully to the applied rf.

Example 2. As another example of solving the inverse
problem, consider the bell-shaped (truncated Gaussian) IED,

f (y) = c exp

[
− (y − |Vm|)2

2σ 2

]
,

|Vm| − V0 < y < |Vm| + V0, |Vm| > V0,

Vm < 0, 0 < ωt < 2π (7)

where the normalization factor, c, is

c = 2

σ
√

2π erf
[
− V0

σ
√

2
, V0

σ
√

2

]
and the error function is defined in a standard way as

erf[z1, z2] = 2√
π

∫ z2

z1

exp[−t2] dt.

Here |Vm| is the mean energy and σ is the standard deviation
of the Gaussian.

Then, as in the previous example, with parameter 0 < x <

1, one obtains (see appendix C)

V (ωt) = Vm + σ
√

2erf−1

[
ωt

2πx
erf

[
− V0

σ
√

2
,

V0

σ
√

2

]

+ erf

[
− V0

σ
√

2

]]
(8)

for 0 < ωt < 2xπ , and

V (ωt) = Vm + σ
√

2erf−1

[
2π − ωt

2π(1 − x)
erf

[
− V0

σ
√

2
,

V0

σ
√

2

]

+ erf

[
− V0

σ
√

2

]]
(9)

for 2xπ < ωt < 2π .
V (ωt) in equations (8) and (9) is the sheath potential that

would result in the IED of equation (7), if ions were to respond
fully to the applied rf. Equations (8) and (9) are plotted in
figure 3. The shape of V (ωt) is intuitively understood by the
fact that the voltage must remain around Vm most of the time,
and spend relatively little time around Vm − V0 or Vm + V0.
Again, the inverse problem has multiple solutions since x can
take any value between 0 and 1. Note that for large values of
the ratio σ/V0, the IED tends to be uniform, and this requires
a linear variation of the voltage V (ωt). Note also that very
narrow distributions with energy around |Vm| (figure 3, left)
may be difficult to realize, as voltage peaks of very low duration
may be required (figure 3, right).

3. The ‘damped’ sheath potential

Ions, in general, do not respond to the instantaneous sheath
potential, but to a ‘damped’ potential Vd(x, t) found from the
following equation [1–3],

dVd(x, t)

dt
= −Vd(x, t) − V (x, t)

τi
(10)

where V (x, t) is the (actual) sheath potential as a function
of position and time and τi is the ion transit time through
the sheath. This is often approximated by the inverse of the
ion plasma frequency, 1/ωpi [1–3]. This differential equation
applies at any position in the sheath, including the electrode.
When applied to the target electrode this equation becomes
(omitting the independent variables for simplicity)

dVd

dt
= −Vd − (VT − Vp)

τi
. (11)

Since ions respond to the damped potential, the energy
distribution of ions striking the target is a direct reflection of
the damped voltage of the sheath over the target [1, 4]. In
equation (11), VT −Vp is the actual sheath voltage at the target
electrode, i.e. the difference between the target potential VT

and the plasma potential Vp.
Equation (11) can also be written as

ωτi
dVd

d(ωt)
+ Vd(ωt) = VT − Vp (12)

3
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Figure 3. Family of IED curves, equation (7) (left) and the voltage profiles that generate them, equations (8) and (9) (right). The IED curves
and voltage profiles correspond to values of σ/V0 = 0.1 (solid line), 0.2 (dashed line), 0.5 (dashed–dotted line) and 1 (dotted line).
Parameter x can take any value in the interval 0 < x < 1. The value x = 0.3 was used for the plot on the right.

Figure 4. Sheath voltage at the target electrode that produces the voltage of equations (8) and (9) (figure 3 (right), for x = 0.5), which in turn
would yield the Gaussian IED of figure 3 (left). For ωτi = 0.1, ions respond, and the required sheath voltage is almost identical to that in
figure 3. For ωτi � 1, the amplitude of the sheath voltage must be increased and the waveform becomes quite different than that in figure 3.

where dVd/d(ωt) can be obtained from equations such as (5)
and (6) or (8) and (9). Knowing Vd(ωt) and its derivative,
equation (12) can now be solved for the actual sheath voltage,
VT−Vp. Applying equation (12) to example 2, above, results in

VT − Vp = ωτi
1

c2πx
exp

[
(Vd(ωt) − Vm)2

2σ 2

]
+ Vd(ωt) (13)

for 0 < ωt < 2xπ , and,

VT − Vp = ωτi
1

c2π(x − 1)
exp

[
(Vd(ωt) − Vm)2

2σ 2

]
+ Vd(ωt)

(14)

for 2xπ < ωt < 2π , where Vd is the voltage in equations (8)
and (9). Note the amplification of VT − Vp as ωτi increases
(figure 4).

4. Circuit model

A circuit model is used to relate the externally applied rf
voltage, Vrf , to the resulting target and plasma potentials, for
a set of plasma and electrical characteristics of the system
[1, 21]. The substrate holding the wafer (target electrode) is
in contact with a plasma with given (bulk) plasma density, n0,
and electron temperature, Te. A radio frequency voltage, Vrf ,
is applied to the target through a blocking capacitor having

IG

IT

VP

CG

CT

VTCbVrf

Figure 5. Equivalent circuit of the system under study. I is the sum
of the ion and electron currents. The subscripts T and G refer to the
target and ‘grounded’ electrode, respectively.

capacitance Cb (figure 5). A sheath forms naturally over the
target accelerating ions toward the substrate. The goal is to
determine the IED function at the substrate. The area of the
substrate is AT while the area of the ‘counter-electrode’ is AG.
Although the target bias voltage is assumed small enough not

4
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to alter the bulk electron density or electron temperature, the
plasma potential may be affected, depending on the area ratio,
AG/AT. For large values of this ratio, the plasma potential
will be near ground. A collisionless sheath and a single ionic
species are assumed throughout.

The sheath is modeled as a capacitor in parallel with a
current source and a diode. The current source represents
the ion current and the diode represents the electron current.
Subscripts T and G denote the target electrode (holding the
wafer) and the ‘ground’ electrode, respectively. Vp is the
plasma potential. The sheath capacitance is a non-linear
function of the sheath potential (equation (18)).

Applying Kirchhoff’s law to this circuit yields

Cb
d

dt
(Vrf − VT) + CT

d

dt
(Vp − VT) + IT = 0

CT
d

dt
(Vp − VT) + CG

d

dt
Vp + IT + IG = 0

(15)

where V , C and I are voltage, sheath capacitance and total
particle current to an electrode, respectively. The particle
current is the sum of the ion and electron currents. The former
is given by the Bohm flux, while the latter is found from the
thermal electron flux at the wall,

IT = AT(Ji + Je)

= ATen0

[
0.605uB − 1

4
ue exp

(
e
VT − Vp

kTe

)]
(16)

where AT is the area of the target electrode, uB is the Bohm
speed (uB = √

kTe/M), M is the ion mass, ue is the
electron thermal speed, (ue = √

8kTe/πm), and m is the
electron mass. The factor 0.605 accounts for the drop off in
plasma density from the bulk plasma to the plasma–sheath
interface.

When applied to the ground electrode, the particle current
reads

IG = AG(Ji + Je)

= AGen0

[
0.605uB − 1

4
ue exp

(
−e

Vp

kTe

)]
. (17)

The sheath capacitance is given by

Cs = −ε0A
∂E

∂Vs
(18)

where the electric field at the wall is [2]

E = −
√

2nskTe
ε0

×
(

(ū−1)

χ̄
(1 + χ − eχ)

)1/2

χ = e(Vs − V1)/kTe

χ̄ = e(Vd − V1)/kTe

ū = (1 − 2χ̄)1/2

for − ∞ < Vs(t) < V1

(19)

E = 0 for V1 � Vs(t) � 0.

Here Vs (� 0) is the sheath voltage, ε0 is the permittivity
of free space, ns is the electron (ion) density at the sheath
edge (ns = 0.605n0) and V1 is the potential at the sheath edge
relative to the plasma potential. When the plasma potential
is set arbitrarily to zero, then V1 = −(kTe/2e) (see figure 6)
[22, p 170].

V=VT V=V1 V=0

Id

Ie

Ii

Electrode Sheath Pre-sheath Plasma
(bulk)

x
n0, Te

Figure 6. Schematic of the sheath and pre-sheath over an electrode.
Ions accelerate from the bulk plasma to acquire the Bohm speed at
the sheath/pre-sheath interface where the potential is V1 (with
respect to the bulk). The target electrode potential is VT. The
electron, ion and displacement currents are also shown.

The circuit model can be used in two ways (see figure 7):

(a) In solving the forward problem one would use Vrf as
input to equations (15) to find the target VT and plasma
Vp potential, thus the (actual) sheath voltage (VT − Vp).
The latter would then be used in equation (11) to find the
damped sheath voltage to which ions respond. Finally, the
damped sheath voltage would be used in equation (1) or
equation (2) to find the IED.

(b) In solving the inverse problem, the reverse procedure
would be followed. One would first solve equation (2) for
(what would be the damped) sheath voltage, then insert
this into equation (12) to find the actual sheath voltage
(VT − Vp), then use the circuit model (equation (15)) to
find the required Vrf (Vp would also be found as part of
the solution).

If the desired IED can be expressed as an analytic function, the
procedure for solving the inverse problem is applied directly.
If the IED is known only at discrete points, then a continuous
(or piecewise continuous) IED can be determined via either
regression or interpolation through the given points, before the
required voltage Vrf is finally computed. For IED points known
with little noise, interpolation can be done fairly safely, without
introducing significant noise-driven artifacts to the continuous
IED. If the discrete IED points are noisy, standard filtering
can be applied to generate the approximate continuous IED,
f (y). Representative results in solving the inverse problem are
shown next. The example problem is to find the required Vrf

that results in the IED shown in figure 8. The IED specified in
this example is a Gaussian with energy equal to |Vm| = 123 eV,
σ = 2 eV and V0 = 10.9 eV. In equation form, the desired IED
is (see also equation (7))

f (V ) = c exp

[
− (V − |Vm|)2

2σ 2

]
+ δ,

5
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ωτi<1

Use given Vrf and plasma
parameters (no, Te) in
Eqs.(15) to find VT(ωt) and
Vp(ωt)

Use V(ωt)=VT(ωt)-Vp(ωt)
in Eq. (1) or V-1(y) in Eq.
(2) to find IED f(y)

Use given IED f(y) in
Eq.(2) to find V-1(y) and
V(ωt)

Knowing V(ωt)=VT(ωt)-
Vp(ωt) use Eqs. (15) to
find Vrf

Forward

Inverse

Use given Vrf and
plasma parameters
(no,Te) in Eqs.(15)
to find VT(ωt) and
Vp(ωt)

Use given IED
f(y) in Eq.(2) to
find Vd

-1(y) and
Vd(ωt)

Knowing
V(ωt)=VT(ωt)-Vp(ωt)
use Eqs.(15) to find
Vrf

Inverse

Use Eq. (11)
to find Vd(ωt)

Use Vd(ωt) in Eq.(1)
or V-1(y) in Eq. (2) to
find IED f(y)

Use Eq. (11)
to find VT(ωt)-
Vp(ωt)

Forward

ωτi >1

Figure 7. Methodology to solve the forward and inverse problems of IEDs on a substrate. Top: ions respond to the applied frequency,
ωτi < 1. Bottom: ions do not respond to the applied frequency, ωτi > 1. Vp, VT, Vrf and Vd are plasma potential, target electrode potential
(facing the plasma), applied rf potential and damped sheath potential, respectively (see also figure 5). V = VT − Vp is the sheath potential
over the target electrode.

Figure 8. A desired IED. The problem is to find the voltage
waveform Vrf that will yield this pre-selected IED (inverse problem).

with − V0 + |Vm| < V < V0 + |Vm|

c = 2(1 − 2δV0)

σ
√

2πerf
[
− V0

σ
√

2
, V0

σ
√

2

] .

The addition of δ serves to alleviate numerical problems
associated with exponentials having large positive arguments.
The value of δ used was 0.001 eV−1, too small on the
y-axis scale of figure 8, to influence the final result. Other

conditions were Cb = 500 pF, n0 = 2 × 1010 cm−3, Te =
3 eV, M = 40 amu (argon discharge), and the area ratio
AG/AT = 20. The applied frequency was such that ωτi = 1.
Before applying the inverse problem procedure, ion energy E

(abscissa in figure 8) was converted to voltage V = E − Te

(all in units of volts), where Te is an average energy ions
gain in the pre-sheath. The resulting voltage waveforms
are shown in figure 9. The required Vrf has a slope at the
base, and the spikes are needed to neutralize the net particle
current through the blocking capacitor. The slope of the Vrf

waveform corresponds to charging of the capacitor [11]. The
damped potential to which ions respond (dotted line) is almost
constant, as required for a single-peaked IED with tight energy
spread.

5. Summary

Control of the energy of ions bombarding a substrate is
important for both plasma etching and plasma deposition. As
device dimensions keep shrinking, requirements on selectivity
and damage become ever more stringent. This imposes strict
limits not only on the mean ion energy but also of the ion
energy distribution (IED). The problem of determining the
IED for given plasma conditions and applied rf bias voltage
has been studied for decades. The inverse problem, that
of determining the required rf bias waveform in order to
achieve a desired IED, has been the subject of study only
recently.

In this work, a general methodology was developed
to determine the rf bias voltage waveform that must be

6
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Figure 9. Voltage waveform Vrf (solid line) that must be applied
before the blocking capacitor (see figure 5) to yield the IED shown
in figure 8, when ωτi = 1. The resulting target voltage VT and
damped sheath voltage Vd are also shown. Other conditions were
Cb = 500 pF, n0 = 2 × 1010 cm−3, Te = 3 eV, M = 40 amu (argon
discharge) and the area ratio AG/AT = 20.

applied through a blocking capacitor to a substrate in contact
with plasma, in order to achieve a desired (pre-selected)
ion energy distribution (IED) bombarding the substrate. A
circuit model was combined with an equation for a damped
sheath potential to which ions respond. The approach is
applicable to collisionless sheaths at all radio frequencies.
Examples of applying this methodology are given including
the case of determining the voltage waveform to achieve a
single-peaked IED with specified mean energy and energy
spread. The inverse problem has multiple solutions, i.e.
there are many voltage waveforms all resulting in the
same IED.
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Appendix A. Derivation of the IED

When ions respond to the applied field, and ion flow through
the sheath is collisionless, the IED depends entirely on the
sheath voltage waveform. Consider the sheath voltage over
one dimensionless period, 2π . Ions entering the sheath at
phase ωt bombard the electrode with energy corresponding
to V (ωt). Now, partition the voltage (ion energy) range into
equal segments of size dy.

The probability of V being between y and y + dy is

P [y � V (ωt) � y + dy] = support(y, y + dy)

2π
(A1)

y
y+dy

ωt
0

V(ωt)

2ππ0

dy

Support (y,y+dy)

Figure A1. Definition of the support of a function.

where support(y, y + dy) is shown on the ωt axis of figure A1.
Therefore,

P [y � V (ωt) � y + dy] = support(y, y + dy)

2π

= 1

2π

∑
# of intervals in 0 < ωt < 2π

such that
y � V (ωt) � y + dy

dy∣∣∣ dV
d(ωt)

∣∣∣ ⇒ f (y)

= lim
dy→0

P [y � V (ωt) � y + dy]

dy

= 1

2π

∑
# of points in 0 < ωt < 2π

such that V (ωt) = y

1∣∣∣ dV
d(ωt)

∣∣∣ (A2)

where f (y) is the IED (density) function. The final expression
for f (y) must not contain ωt . To eliminate ωt in favor of y,

y = V (ωt) ⇒ ωt = V −1(y) ⇒ 1 = d(ωt)

d(ωt)
= dV −1(y)

d(ωt)

= dV −1(y)

dy

dy

d(ωt)
⇒ dV

d(ωt)
= 1

dV −1(y)

dy

(A3)

Therefore,

f (y) = 1

2π

∑
# of points in 0 < ωt < 2π

such that V (ωt) = y

∣∣∣∣dV −1(y)

dy

∣∣∣∣. (A4)

Note that because of the absolute value in the summation
in equation (A2) parts of V ′(ωt) over intervals for which
V ′(ωt) 	= 0 can be replaced by −V ′(ωt) without any change
in f (y). Figure A2 shows how this transformation works for
V (ωt) = V0 sin(ωt − (π/2)) + Vm. Three profiles of V (ωt)
result in the same IED, f (y).
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ωt

V
m
-V

0

V
m
+V

0

V
m

0
V(ωt)

2ππ0

Figure A2. Three profiles (heavy dotted, dotted and solid lines) of
sheath voltage V (ωt) resulting in the same IED f (y).

Appendix B. Solution of the inverse problem of
example 1

Consider the IED in equation (4), i.e.

f (y) = 1

π

1

V0

√
1 −

(
y−|Vm |

V0

)2
.

Then equation (A4) yields

1

π

1

V0

√
1 −

(
y−|Vm |

V0

)2
= 1

2π

∑
# of points in 0 < ωt < 2π

such that V (ωt) = y

1∣∣∣ dV
d(ωt)

∣∣∣ .
(B1)

To ensure continuity from cycle to cycle, V (ωt) must satisfy
the constraint V (0) = V (2π). Further, if V (ωt) is continuous
in 0 � ωt � 2π , then dV /d(ωt) switches signs at least once.
To identify voltages that result in f (y) given by equation (4),
assume that the summation term contains two entries for the
same y = V (ωt), corresponding to dV /d(ωt) > 0 followed
by dV /d(ωt) < 0. To find the voltage V (ωt) consider
a parameter 0 < x < 1 and split the left-hand side of
equation (B1) to get

x
1

V0

√
1 −

(
y−|Vm |

V0

)2
= 1

2

1
dV

d(ωt)

,
dV

d(ωt)
> 0 (B2)

and

(1 − x)
1

V0

√
1 −

(
y−|Vm |

V0

)2
= 1

2

−1
dV

d(ωt)

,
dV

d(ωt)
< 0.

(B3)

Equation (B2) yields∫
x

dV

V0

√
1 −

(
y−|Vm |

V0

)2
=

∫
1

2
d(ωt) ⇒ sin−1

(
V − |Vm|

V0

)

= 1

2x
ωt + c1 ⇒ V = V0 sin

(
1

2x
ωt + c1

)
+ Vm (B4)

and equation (B3) yields∫
(1 − x)

dV

V0

√
1 −

(
y−|Vm |

V0

)2

= −
∫

1

2
d(ωt) ⇒ sin−1

(
V − |Vm|

V0

)

= −1

2(1 − x)
ωt + c2 ⇒ V = V0 sin

( −1

2(1 − x)
ωt + c2

)
+ Vm.

(B5)

Now select c1 = −(π/2), for which dV /d(ωt) > 0 in
equation (B2) for 0 < ωt < 2xπ . Similarly, pick c2 =
π(1 + x)/2(1 − x), for which dV /d(ωt) < 0 for 2xπ < ωt <

2π . These choices result in equations (5) and (6), respectively.
Clearly, there is an infinite number of voltage waveforms all
yielding the same IED.

Appendix C. Solution of the inverse problem of
example 2

Consider the bell-shaped IED of equation (7). Then, as in
appendix B, consider a parameter 0 < x < 1 and split the
left-hand side of the equation

c exp

[
− (y − |Vm|)2

2σ 2

]
= 1

2π

∑
# of points in 0 < ωt < 2π

such that V (ωt) = y

1∣∣∣ dV
d(ωt)

∣∣∣
(C1)

into two terms,

xc exp

[
− (y − |Vm|)2

2σ 2

]
= 1

2π

1
dV

d(ωt)

,
dV

d(ωt)
> 0 (C2)

and

(1 − x)c exp

[
− (y − |Vm|)2

2σ 2

]
= 1

2π

−1
dV

d(ωt)

,
dV

d(ωt)
< 0.

(C3)

Equation (C2) yields

erf
[
− V0

σ
√

2
, V −Vm

σ
√

2

]
erf

[
− V0

σ
√

2
, V0

σ
√

2

] = ωt

2πx

⇒ V (ωt) = Vm + σ
√

2 erf−1

[
ωt

2πx
erf

[
− V0

σ
√

2
,

V0

σ
√

2

]

+ erf

[
− V0

σ
√

2

]]
(C4)

for 0 < ωt < 2xπ , (corresponding to dV /d(ωt) > 0), and
equation (C3) yields

erf
[
− V0

σ
√

2
, V −Vm

σ
√

2

]
erf

[
− V0

σ
√

2
, V0

σ
√

2

] = 2π − ωt

2π(1 − x)
⇒ V (ωt)

= Vm + σ
√

2 erf−1

[
2π − ωt

2π(1 − x)
erf

[
− V0

σ
√

2
,

V0

σ
√

2

]

+ erf

[
− V0

σ
√

2

]]
(C5)

for 2xπ < ωt < 2π , (corresponding to dV /d(ωt) < 0).

8
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These are equations (8) and (9), respectively. Again, there
is an infinite number of voltage waveforms all yielding the
same IED.
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