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is observed that for a certain set of parameters, there are periodically recurring ranges of slab thickness for whiciméweaynal ru

may be avoided. The runaway dependence on other parameters critical to the operation of the process is also studiedd. The result
presented here may be used to prevent thermal runaway in microwave heating of ceramics.
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Microwave heating has been applied in a variety of applicationssome approaches to avoid thermal runaway during microwave heat-
including sintering and joining of ceramicand chemical vapor ing of ceramic materials.
infiltration of fiber-reinforced ceramic composit€3.0ne of the
major hurdles currently faced in the application of microwave pro- Mathematical Model

cessing of ceramics is the occurrence of thermal run&Waig phe- We assume that the sample thickness is much smaller compared
nomenon corresponds to a situation in which a small change in thg the lateral dimensions so that a one-dimensional model is a rea-
design or operating variables (such as the thickness of the sample @snable representation of the system. We assume that a plane time-
microwave power) causes a rather large increase (of the order of searmonic electromagnetic wave of frequencjmpinges normally

eral hundred degrees) in the temperature of the material being heaind the ceramic material is isotropic. A portion of the wave is scat-
ed. Thermal runaway may also lead to melting of the ceramic mateered at the interface = 0, a portion penetrates the slab and heats
rial. It occurs due to the coupling of the thermal and electric fieldsthe material, and the remaining portion is transmitted through the
and a positive feedback mechanism similar to that encountered igther interface at = d. The electric field and thermal energy bal-

chemical reactors. Specifically, a small increase in temperature inance for the ceramic slab are given by the following equatfons.
creases the dissipation rate (through the loss moduli which increases

exponentially with temperature) and leads to a further increase in Electric field equation—

temperature. This leads to the familiar ignition and extinction phe- du -0 oo (T)
nomenon observed in chemical reactors and combustion. Under — + kl2 + iO—HJ =0 O<x<d [1a]
these conditions the steady-state temperature of the ceramic materi- dx wep

al is not a continuous function of the applied power. ] o ) o

Several efforts have been made to understand and quantify thel this equatiork; = w/c (e,/e)'/% wheree, is the permittivity of
mal stability of dielectric materials heated by microwave energy.the ceramic materia, is the permittivity of free space, ang(T)
These studies can be classified into three groups. The first group &% the relative loss modulus of the material. The boundary conditions
model-8 assumes a uniform electric field and temperature distribu-2t the two ends of the slab are given by
tion within the material. The second grédmf models uses a con-

stant electric field but includes spatial variations in temperature. The au .- .= _

third groug®1! of models assumes a low Biot number limit, and dx kU = 2ikE, ax=0 [16]
hence a uniform temperature inside the ceramic, but a spatially

dependent electric field. Most of these studies analyzed the steady- du .-

state behavior of a ceramic material under microwave heating. They o kU =0 ax=d [1c]

confirmed the existence of ignition and extinction phenomena as the _
microwave power is increased or decreased. Sit@t® showed the ~ wherek = w/c andE, is the electric field applied at the boundary
variation in the critical temperature (temperature at which ignition orx = 0.

runaway is first observed) with the temperature exponent of the loss Energy balance—

moduli. The lumped (spatially uniform) models used in these stud-

ies are valid only for certain limiting cases and do not give a com- aT 92T

plete picture of runaway behavior. pCp— = K—— + lcrc,(T)|U|2 0< x<d [24]
In this work we discuss the steady-state behavior of a full one- ot 0x 2

dimensional model which accounts for spatial variation of both tem-At the boundaries of the slab, heat is lost by convection and radia-
perature and electric fields. We focus mainly on thermal runawayion to the surroundings

and how it depends on several important process parameters such as

sample thickness, frequency of the microwaves, the loss modulus of oT

the material, and the temperature sensitivity of the loss modulus. In K& =h(T - T,) + oe(T* - T5)) ax =0 [2b]
the next section we present the mathematical model used for the

analysis. Then we discuss briefly the mathematical (bifurcation) and oT

numerical techniques used to analyze and classify the behavior of fK—X =h(T-T,) + oe(T4 — T04) ax=d [2c]

the steady-state model. Finally, we present the results and discuss

whereK is the thermal conductivity of the materihlis the convec-
* Electrochemical Society Active Member. tive heat-transfer coefficienty is the Stefan-Boltzmann constant,
Z E-mail: economou@uh.edu ande is the emissivity of the material.
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For méerials su® asAl,Oz and ZrG, for which themal unawvay
is obseved, the elaive loss modulus ineases xponentialy with
tempesture and aelaion of the brm o (T) = b,e2’ may be used
whete b; andb, are constants detained expeimentally.®!

Defining dimensionlessariables and pametes as

&= X u= Y 9 = T-T
d 0 To
_ ky . hd
k = kd N Bi = [3]
bZTb
R==% V7R wey
and nomalizing the aplied paver p = 1/2we;E2 by p, = KT/d?,
the goveming equéions mg be witten as
Electiic field equdion.—
2
d + Nk2(1 + itand,e”)u = 0<&<1 [3a]
with bounday conditions
%+|ku—2|k ag=0 [3b]
du
—iku=0 ag=1 3c
pm 3 [3c]

Enegy balance—Since we consider oyl the steag-stae
behaior of the systemwe diop the time devative tem in Eq. 2a.
The dimensionlesofm of the enagy balance is iyen ty

2
ﬂ + £tand e = 0<g<l [4a]
de? c
with bounday conditions
do
d—g—Bl{O-i-R[(G-i-l) —1]} ag=0 [4b]
dG
& Bl{e + RO + DY - 1]} ag=1 [4c]

Besides the @plied micowave paver p, other citical pamametes

tha detemine the qualittive behaior are the ambient loss modulus

(tand,), the tempeature sensitiity coeficient (v), and the dimen
sionless sla thickness K).

The poblem consists of one complequaion for the elecic field
(Eqg. 3a) along with onesal eqution for tempesture (Eq. 4a) to be
solved sinultaneoust for the steayl stae. The compl& electic field
equdion can be gearted into tw real equ#ons, which leaves us
with three sinultaneous second-aer coupled boundgrvalue pob-
lems.We use theifiite difference method to disgtize these equi@ns
and sole the esulting algbraic equéions rumeically.

Bifur cation Analysis of the Steagl-State Discretized Model and
Computation of Singular Points

The discetized steag-stae model consists di(=3n) equdions
for the tempature and 6r the eal and compleelectic field com
ponents &n nodal pointsWe ae inteested in detenining hav the
number of solutions to this system of nonlinearhigic equéons
changs as the pametes ae \aried.

Consider solvingN nonlinear equiéons in N stae \ariables u,
dependent on a set of parametes p

F(u,p) =0 ueRY, peR™ [5]
Suppose thau = ug is a solution ér p = p,. Let

oF
L—DF(Uopo)—aT
i

be theN X N Jacobian maix. Expanding the ector functionF in a
Taylor's seies apund point (g, pp) gives

F(u, p) = F(ug, Po) + D F(Ug, Po)(u — Ug)
+ DpF(Ug, Po)(p —

(HOT stands dr higher oder tems.) Hee DF = 0F;/dp; is aN X
M matrix. Using the &ct tha F(u, p) = F(u, po) oa stead stde
and tuncding theTaylor's seies d the linear tems gves

L(u — ug) + DpF(ug, po)(p — po) = O [8]

These linear eqtians desdbe hav the solution aries for small
changes in the pameter ectorp. If the mdrix L is invertible we
can epress the ng solutionu in terms ofuy and the paameter ec
tor p in the neighborhood qf as

u = Uy — L'D,F(ug, PO)(P — Po) [9]

This opestion results in a unique solutiolrfu, close tou,, as the
parametes, p, are vailied. For the case fenL is singular (or nonin
vettible) with a simple ero eigervalue it can be shan tha either a
newv solution band emeges foom ugy or two solution bandes
mege.1314 These points artemed bifucaion or limit points.The
parameter alues awhich bifurcation or limit points occur gasfy the
following set of equi#ons

i=1..,N;j=1..N [6]

Po) + h.0.t [7]

F(u,p) =0 [10a]
Lyo=0 [10h]
Yo Yo =1 [10c]

(Yo, Yo» implies the dot or inner pduct.) Eqution 10c is a conéli
tion for nontiviality of the eigervectory,. The dove set of N + 1
equdions can be sobd sinultaneoust for ary one paameter
(keeping other paametes fixed) a a point of bifucaion (or a limit
point) and the &ctois u andy,. Equivalentl, we can plot a locus in
a two-pamameter space (wich is knavn as the limit point locus or
bifurcation set).When the paametes cioss this setthe rumber of
solutions of Eqg. 5kangs. for the poblem studied her the bifur
caion set consists of twbrandes,i.e., the ignition and stinction
locus. The bifurcaion set spartes the paxmeter space into tw
regions coresponding to either one or #& solutions.

Computdion of the singular points—We naw illustrate the teb-
nigue used to compute the limit points of the sgestate discetized
model.The discetized model is iyen by Eq. 10a-cThese érm a set
of 2N + 1 equdions,which detemines the Rl unknowns (u, yg) and
one adlitional pamameter inp. The staightforward gpproad is to
compute the functiorF and detemine its &cobian mtix, L,
numeically. Then the eigrvectory, is evaluged and used in the
defining conditions ér the limit point. In oder to educe computing
time and stage requiements v do not compute theadobian
matrix explicitly but compute the pduct ofL andyq by using the
definition

0
Lyo = DyF(uo, Polyo = %F(Uo + Yo po)@ ats=0 [11]

Contiruation of the singular points—A pseudo-ar length con
tinuation tediniqué® is_used to compute the limit point locus in a
two-palameter spacéf Xis a solution ector and; (i = 1,2) ae the
two paametes, the set of equins gven is augmentedytthe sin

gle equéion
~ [} - X" - Z (P~ Po)=0 [12]



Journal of The Electochemical Societyl46(12) 4659-4665 (1999)

4661

S0013-4651(99)04-011-2 CC&7.00 © The Electochemical Societyinc.

where sis the stp siz and the subspt O denotesalues athe pe-
vious st@.

The continidion ste siz, s, may be adjusted gending on the
sensitvity of parametic region. Beginning with an initial toice br
s, a multiplicative factor detamines the ste siz for the nat stg
depending on theumber of iteation steos in the actual contiraion
step. In this work, the st@-size contol was adjusted siicthd the
optimum rumber of iteations emain betwen tvwo and fve & every
contirugtion step.

Solution of the set of nonlinear algaic equaions—The set of
algebraic equéons, which is the esult of discetizaion, may be
written as

F(u,p) O
Yo 7
— 0
G(X) = é(ymy& 1 2 S= 0 [13]
ész—li—x_olz— Z (B ~ o) =0
X) =y, X=Xp.p) [14]

The standat Nevton-Rghson method &s gplied to sole this set
of nonlinear algbraic equéions. The inal vector equion G(X) =
0 consists of R + 2 sinultaneous scalar eqiians.At every New-
ton-Rephson iteation the &cobian maix J and the imerse méarix
are rumeically computed The stieme cowerged for reasonbly
good initial guesseof the solution gctorX.

Results

We first illustrate results 6r a sld being heted in a micowave
field with a gadual incease in thepplied paver stating & ambient
tempesture (T = T,). As the paver is inceased shaly, the temper
ature of the cemmic also inoceases sloly, but & a citical value of
the paver thee is a suden jump in the tempature to a ety high
value to the so-called ignited ¢t The tempeature on this ignited
branc could be in theange where the cesimic can melt don. Fur
ther incease in thegplied paver leads to argdual incease in tem
perature. Similaiy, if initiall y the stée of the ceamic is on the high-
tempeature brand and the pplied paver is gadually deceased
the tempeature of the ceamic deceases @dually until a cetain
critical value @ which a suden and shardecease occw: When the
microwave paver is belav this etinction limit, the ceamic is in the
low-tempeeture (quenbed) baend. Thus, the steag-stae cuwve
descibing the centefine tempeature echibits tysteesis with tvo
steble stdes (and one undike stde) when the pplied paver is
between the ignition andxéinction limits.

Figure 1 illustetes the hove-desdbed typical S-shged steag
stae behaior for a ceamic sld under micowave hedéing for d =
4.0 cm and other pameter alues gven inTable |. Sut steag-stae
behaior has been eported ty numeous autha®1011 Points
maiked (1) and (2) &rthe ignition andxinction point,respectie-
ly. They are chamacteized ty the lineaized steag-stae system ha
ing a zro eigervalue Physical reasoning or stility analysis ma
be used to sl tha the midlle steagl-stae brand between points
(1) and (2) is unstde. Note tha the paver gven in Rg. 1 is the
applied paver (P = 1/2 WE;E?) not the pwer dissipged in the
ceramic (see alsoi§. 13).

In Fig. 2 and 3 the squaiof the mgnitude of the eledt field and
the tempeature pofiles ae shovn & the thee diferent locdions on
the S-shped cuve noted in K. 1. It is obsered tha the electic field
expeliences spigally undamped osciltions a low tempesatures
which decg exponentialy as the tempeture is inceasedFnally, at
high enough tempatures,the electic field shavs a simple xponen

7/ WL B B B e
[ (3) Ignited branch
6 N ;
- [ (2) Extinction point ]
o | ]
o ST ]
ot L 4
= [ ]
N o -
Soaf ;
=¥ [ ]
g [ ]
& 3r ]
P L ]
3 ]
= [ .
o 2F ]
O i ]
1 [ (1) Ignition point :
E Extinguished Branch ]
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Applied Power ( x10* W/em®)

Figure 1 Simple S-shged steag stae bifurcaion disgram for ceamic sld
(d = 4.0 cm). Other pameter alues as ifable I.

tial decy with a maxinum & the surbce The tempeature pofile
inside the camic (Hg. 3) is symmeic and displgis a maxinam
near the centeit fow tempeatures. Havever, the tempeature piofile
becomes asymmaétrand the maximm shifts tevard the surfice with
increasing tempeture. The maxinum tempegture never reades the
surface & = 0) due to hedosses fom the suidice These tansitions
in tempeature and electc field profiles occur due to thexponential
increase in the loss moduli (taige’®) with tempeature.

Figure 4 illustetes haov the ignition and xinction points mee
in the paameter space of mimwvave paver and slb thickness (a
bifurcdion set). It is obseed tha the micowave paver & which
ignition and etinction occur oscilltes with the sla thickness. Sue
peculiar behéor has not beeneported for a plysical system and
can be #ributed to the oscillions of the elecic field inside the
ceramic It is also seen thahe oscilléions in the limit point (igni
tion and etinction) locus she an &ponential deca with sleb
thickness,which can be tiributed to the xponential deca of the
electic field with thidkness.An interesting obsemtion from this
bifurcaion set is theias one ges tovard lamger sld thickness the
oscillding ignition and gtinction points mege (& a so-called ys-
teresis point) leading tafmation of s@regated loops (not shen in
Fig. 4). The plysical intepretaion of this esult is thathee ae
“windows” in thickness were the bifucdion diagram of the center
tempeature vs.power is a single alued cuve (with no ignition and
extinction points), and no wnawvay occus for ary value of
microwave paver. For the paameter @lues ve haie dosen,this
behaior seems to occuof thiknesses merthan 12 cm. Ltar on
we shov tha this behaior can occurdr smaller slh thicknesses if
we incease the miowave frequeng or ceamic pemittivity. FHg-
ure 5 gives a &w representéive bifurcation diagrams with

Table |. Base case pameter values used in calculions.

Ambient tempeature
Hea-transkr coeficient
Themal conductiity

T, (K) 300
h(W/m2K) 170
K (W/m K) 10

Relaive pemittivity €ile, 10
Emissvity e 0.7
Frequenyg f (GHz) 2.45
Loss moduli (&T,) tan g, 0.0012

Tempeeture exponent of loss moduli v 1.0
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Figure 2 Electic field profiles inside the skaa the thee diferent locdions
noted in kg. 1.

Square of Magnitude of Electric Field (Iulz)

=}

microwave paver being the opeting (bifurcaion) paameter It is
clealy seen in k. 4 tha the ange of paver values &r which we
have multiplicity (difference betwen ignition andxinction points)
grows and shinks (.e., oscillates) as w tang the thikness,but
the oscilldion amplitude shes an &ponential decawith increas
ing thickness. Fuher intepretaion of the behaor in Hg. 4 and 5
is shavn in the bifucation diagrams of kg. 6 and 7 \kere we hae
taken the slb thickness as the opsing paameter keping the
microwave paver constantThese igures shw tha there is a ange
of thickness 6r which thee «ist steag-stae nultiplicities (more
than one tempeture for the same thimess) intespesed within a
range of thikness 6r which a single steadstae eists for a dven
microwave paver. For ceamic sinteing one my desie to opeate
at an intemediae tempegture, not on the ignited land, to avoid

F | T —T T ™7
st ?
= ' 3) Ignited branch j
__6F (2) Extinction Pt
2 [
© 5F
E 5
o
=3 [ ]
g3} :
=
2 F .
[ (1) Ignition Pt. ]
1p
0 T R S M PR
0 0.2 0.4 0.6 0.8 1
Depth (x/d)

Figure 3 Tempesture piofiles inside the ska & three diferent locdions
noted in kg 1.

Thickness (cm)

Ignition locus

Extinction locus

O.I.O.S .ll ..1.5....2
Applied Power ( x10* W/cm®)

Figure 4 Bifurcation set in the pameter space ofpalied paver and slh
thicknessThe two different cures corespond to the ignition anctinction
locus. Other pameter alues as iable I.

runavay. In sud a case one rgavant to opeste in a egime where
there is no naultiplicity for a gven paver so thaone is not @pped
in the lover (extinguished) tempeture branc or does not jump to
the \ery high tempeature ignited banc.

Figure 8 dgves another bifuration set in the pameter space of
ambient loss modulus (taly) and micowave paver. This plot was
made br a sld thickness of 1 cm. It is obserd tha the two limit
points mege (& a tysteesis point) as tad, increasesThis implies
tha if we @ in the diection pependicular to the plane irid= 4 (in
the paameter space of tai), the oscillding loops seen inif. 4
shiink and fnally disgppear with inceasing tarml,, putting an end to
runaway behaior. Thus, maerials haing higher loss moduli ta

c
(=)

Center Temperature (0 )
S

0 01 02 03 04 05 06 07 0.8
Applied Power ( x10* W/em®)

Figure 5 Steag-stée bifurcation diagrams demonsiting the gowing and
shiinking of multiplicity in Fig 4.
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Figure 6 Steag-stae bifurcation diagram using thikness as the bifaation
pammeter demonsiting multiplicity and isolded solution bandes(p = 5
kW/cm?, other paameter alues as ifable 1).

0 05 1

ambient conditions & lesser lcances of‘running avay” upon
microwave hedéing. Another intepreteaion of this esult would be to

operte & elevated tempeatures, increasing the loss modulus and

averting runaway.

We nav discuss he other elevant paametes afect the bifur
caion behaior. An important paameter is the miowave frequen
¢y, which may range from 2.45 to 24.5 GHz under moal sinteing
conditions. The most commowl used fequeng, though, is
2.45GHz & which all the pevious anaJsis was donelf one dou

TTTT YT T

c
w £ W (=)
T T

Center Temperature (0 )

N
T

00 1 ..2....3.-..4.4..5....6....7.‘;.8

Thickness (cm)

Figure 7. Steag-stae bifurcation diagram using thikness as the bifaation
parameter demonsiting formation of nev isolaed solution bandes p =
2.5 kWicn?, other paameter alues as ifable 1).

1
;c
=
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2
2 001}
= [
=
=
2
-3 Multiple Solutions
£ 0.001 |
‘3 s
5 Unique Solution
0.0001 R

0 0.1 02 03 04 05
Applied Power ( x10* W/em®)

Figure 8 Bifurcation set in (tard,, p) space shwing the meger of ignition
and etinction points &higher alues of tard, (d = 1.0 cm,other paameter
values as ifable I).

bles the micowave frequenyg (f = 4.9 GHz) one sees a quadlite-
ly similar bifurcaion set (compa Fg. 9 to Fg. 4). Note thaby
doulding both the thikness and the miowave paver in Hg. 9 one
retraces ky. 4 with minor @angs. Thus, douling the frequenyg
rescales the pblem.Also, it should be mentioned thby opegting
at higher flequeng we can akbieve the adlantaye of opeating &
larger thiknessthus aailing the“windows” in thickness ér which
ther is no unavay even for small slé thidkness. Inagase in per
mittivity has qualitdvely the same ééct as incgase in fequeng.
Figure 10 gves a bifucation set br a elaive pemittivity (e;/e,) of
60, keging all other paametes as shan inTable I. It is evident tha
there ae windavs stating near thiknesses of 2.43.2, 4.0, 4.8,

Thickness (cm)
£ wn
L Lo

w

Ignition locus

Extinction lo.cus , ]

0 05 1 15

2 25 3 35
Applied Power (x104 W/cm3)

Figure 9 Bifurcation set in ¢, p) space dér f = 4.9 GHz. Doubng the fre-
queng just rescales ig. 4. Other pameter alues as ifable I.
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Figure 1Q Bifurcation set in ¢, p) space dr €;/e, = 60. Inceasing panit-
tivity moves“windows” of uniqueness teard smaller slh thickness. Other
parameter @lues as ifable I.

..... cm,and these windes gve moe flexibility to operate while
avoiding mnavay. One sub windav is demonsated in Hg. 11
which shavs bifurcaion diagrams vhere we hare no nultiplicity for
a specift thickness § = 3.9 cm) badeted on either sideyta nul-
tiple solution egime. A case without naltiplicity is ideal in the sense
that the desied tempeature of the ceamic can be set uniqueby a
microwave paver setting

It should be noted thahe system can be sensitie’en when the
bifurcaion diagram is single alued For example we see fom Fg. 11
tha whend = 3.9 cm thee is a unique center temgirre for ary
applied paver. However, whenp is dose to 0.2x 10* W/cn?, the cen
ter tempesture is sensitie to dianges inp. Thus,while sudlen jumps

)
'

Center Temperature (6

04 06 08 1
Applied Power ( x10° W/em®)

Figure 11 Steag-stae bifurcaion disgrams shwing uniqueness ¢f d =
3.9 cm) of solution ceesponding tdwindow” in Fig. 10.

are not pesent in the unique solutioegion, the system can stilkéib-
it “parametic sensitvity,” where small angs in one of the opating
variables €.g., power) result in lage \ariation in the tempetture.

The complementgreffect of pemittivity and frequeng can be
explained ly the waverumberk;(= 2mflc(e /e,)Y?). The inverse of
this waverumber deihes the length scale of the eléctiield oscit
lations. The oscilldions gpeang in the bifucation set hae wave-
lengthC/ky, where C is a constanfThus,a relaive cdang in oper
ating frequenyg Af/f has a similar ééct as aelaive dhang in per
mittivity Aej/e; = (AF/)2

Further insight into thedaures pesented mabe povided by
anayzing the same model with a constant loss modwles@). This
would decouple the eleatrfield equdions, which ae nav linear
and can be sobd eplicitly. Substitution ofu(¢) in the enagy bak
ance Eq. 4a and irgestion gves a unique tempature profile. Thus,
there will always be a unique solutionhenv = 0. For this case &
plot the center tempature (Hg. 12) and paer deposition (Fg. 13)
vairiation with thickness. It can be seen ttth oscillde with thik-
nessAlso, the length scale of these osdiltems (wavelength) is the
same as the one in the bitation setfurther coroborting the phe
nomenon desiyed peviously.

Finally, we note thafor ary small lut nonzro value ofv, the
bounday value poblem defned ty Eq. 3a-c and 4a-c hasuitiple
solutions (br some ange of other pametes). As v is varied, the
qualitaive feaures emain the sameuib move to a diferent mnge in
the paameter spaceFor example the tempeature of the ignition
point my be gproximated ly 6; =~ 1hv. Thus,the tempeature sen
sitivity parameter ¢) detemines the ignition andxénction temper
atures and hence singly influences theunawvay behaior.

Summary

In this work we have anayzed and tassifed the themal behaior
of a ceamic sld under micowave hedéing. Themal munavay can
occur due to agedbak medanism vhereby the dility of the made-
rial to ésorb micowave enegy (the loss modulus) ineases as the
tempesture incleases. Sucthemal unavay can lead to complete
meltdavn of the méerial. Bifurcaion theoy was used to deteiline
the region of themal unavay and hav it is influenced ly important
variables and pametes sut as the mi@mwave paver, ceramic per
mittivity, relaive loss modulusnicrowave frequeng, and sl thidk-

wn
T
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[N

(5]

Center Temperature (6 )
w

10

Thickness (cm)

Figure 12 The“unique” tempesture (v = 0) inside the cemmic oscillaes as
slab thickness is bangd for a gven micowave paver (@ = 10 kWi/cn?,
other paameter alues as ifable I).
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Figure 13 The“unique” power deosition ¢ = 0) inside the camic osci
lates as sla thikness is banged for a gven micowave paver ( =
10 kW/cn®, other paameter alues as iable 1).

ness. It vas bund thafor a cetain set of paameter alues viich ae
within the ange of pactical systemshere ae perodically recuring
ranges of slé thikness ér which themal unavay may be aoided
Also, one can select ofsting paametes so as to supess nultiple
solutions br the micowave-heded ceamic maerial. In sud cases,
the tempeature of the ceamic is a unique function of the \wer
absorbed b the ceamic, and themal unavay does not occur as tha
power is inceased The one-dimensional model ayzéd hee pio-
vides nuch better insight into the bebiar of the sl& under
microwave heéing as compaad to the lumped model usedyious
ly by several authos. The lumped model is arpproximation to the
actual pocess onl in the limiting case of ety small (and perhzs
unrealistic) \alues of slh thickness. kally, it should be pointed out
that the analsis and teloniques pesented hermg be used to ana
lyze moe complicéeed models €g., two- and thee-dimensional
models) and the behiar of nonisotopic maerals.

List of Symbols

@

Biot number

velocity of light,m/s

specifc hed cgacity of the ceamic

sleb thicknessm

emissvity

applied electic field, V/m

ambient hetranser coeficient, W/(m? K)
waverumber of the incident miowave, m~1
waverumber inside the camic m~1
themal conductiity, W/(m K)

applied micowave paver, W/m?®
tempesture, K

electic field in the ceamic V/m
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[¢]
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pemittivity of free spaceF/m
pemittivity of the ceamic, F/m

0 dimensionless tempature

v tempesture sensitiity of loss moduli
¢ dimensionless qeh inside the camic
p density of the camic kg/m®
(o2

g

w

m
o

€

i

Stefan-Boltzmann constarity/(m? K4)
° relative loss modulus of the @amic
(= 2uf) wave frequeny, s 1

Acknowledgments

This work was suppded in pat by the Enegy Laboratory at the
University of Houston.

References

. W. D. Kingery, H. K. Bawen,and D R. Uhiman,Introduction to Ceamics John
Wiley, New York (1976).
Degrak and JW. Evans,J. Am. Ceam. Sog 76, 1915 (1993).
. Degpak and JW. Evans,J. Am. Ceam. Sog 76, 1924 (1993).
V. Midha and D J Economou,). Electochem. Sog 144, 4026 (1997).
V. Midha and D J Economou,). Electochem. Sog 145 3569 (1998).
W. H. SuttonAm. Ceam. SocBull., 68, 376 (1989).
. G.A. KriegsmannCeram.Trans, 59, 269 (1995).
M. S. Spotz,D. J Skamserand L. D Johnson,J. Am. Ceam. Soc 78, 1041
(1995).
9. G.A. Kriegsmann and.Rarathamjah,Ceram.Trans, 36, 221 (1993).
10. G. A. Kriegsmann,J. Appl. Ptys, 71, 1960 (1991).
11. C.A. Vriezinga,J. Appl. Ptys, 83, 438 (1998).
12
13

=

PNOUAWN

. S.Al-Asafi and D E. Clak, Mater. Res. SacSymp. Ruc., 269, 335 (1992).
. M. Golubitsky and D G. Scaefer, Singulaities and Goups in Bifucation Theo
ry, Vol. 1, Spiinger-Verag, New York (1985).
14. V. Balalotaiah,D. Luss,and B L. Keyfitz, Chem. EngComnun., 36, 121 (1985).
15. H. B. Keller, Applications of Bifucation Theoty, P. H. Rdinowitz, Editor, pp. 159-
385,Academic Pess,New York (1977).



	Mathematical Model
	Bifurcation Analysis of the Steady-State Discretized Model and
	Results
	Summary
	List of Symbols
	Acknowledgments
	References

