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Bifurcation Analysis of Thermal Runaway in Microwave
Heating of Ceramics
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The steady-state behavior of a ceramic slab under microwave heating by transverse magnetic illumination is analyzed. Local bifur-
cation techniques are applied to a one-dimensional model to classify the region of parametric sensitivity (or thermal runaway). It
is observed that for a certain set of parameters, there are periodically recurring ranges of slab thickness for which thermal runaway
may be avoided. The runaway dependence on other parameters critical to the operation of the process is also studied. The results
presented here may be used to prevent thermal runaway in microwave heating of ceramics.
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Microwave heating has been applied in a variety of applicati
including sintering and joining of ceramics1 and chemical vapor
infiltration of fiber-reinforced ceramic composites.2-5 One of the
major hurdles currently faced in the application of microwave p
cessing of ceramics is the occurrence of thermal runaway.6 This phe-
nomenon corresponds to a situation in which a small change in
design or operating variables (such as the thickness of the samp
microwave power) causes a rather large increase (of the order of
eral hundred degrees) in the temperature of the material being 
ed. Thermal runaway may also lead to melting of the ceramic m
rial. It occurs due to the coupling of the thermal and electric fie
and a positive feedback mechanism similar to that encountere
chemical reactors. Specifically, a small increase in temperature
creases the dissipation rate (through the loss moduli which incre
exponentially with temperature) and leads to a further increas
temperature. This leads to the familiar ignition and extinction p
nomenon observed in chemical reactors and combustion. U
these conditions the steady-state temperature of the ceramic m
al is not a continuous function of the applied power.

Several efforts have been made to understand and quantify 
mal stability of dielectric materials heated by microwave ener
These studies can be classified into three groups. The first grou
models7,8 assumes a uniform electric field and temperature distri
tion within the material. The second group8,9 of models uses a con-
stant electric field but includes spatial variations in temperature. 
third group10,11 of models assumes a low Biot number limit, an
hence a uniform temperature inside the ceramic, but a spat
dependent electric field. Most of these studies analyzed the ste
state behavior of a ceramic material under microwave heating. T
confirmed the existence of ignition and extinction phenomena as
microwave power is increased or decreased. Spotz et al.8 showed the
variation in the critical temperature (temperature at which ignition
runaway is first observed) with the temperature exponent of the 
moduli. The lumped (spatially uniform) models used in these st
ies are valid only for certain limiting cases and do not give a co
plete picture of runaway behavior.

In this work we discuss the steady-state behavior of a full o
dimensional model which accounts for spatial variation of both te
perature and electric fields. We focus mainly on thermal runaw
and how it depends on several important process parameters su
sample thickness, frequency of the microwaves, the loss modulu
the material, and the temperature sensitivity of the loss modulus
the next section we present the mathematical model used for
analysis. Then we discuss briefly the mathematical (bifurcation) 
numerical techniques used to analyze and classify the behavio
the steady-state model. Finally, we present the results and dis
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some approaches to avoid thermal runaway during microwave hea
ing of ceramic materials.

Mathematical Model

We assume that the sample thickness is much smaller compare
to the lateral dimensions so that a one-dimensional model is a rea
sonable representation of the system. We assume that a plane tim
harmonic electromagnetic wave of frequency v impinges normally
and the ceramic material is isotropic. A portion of the wave is scat
tered at the interface x 5 0, a portion penetrates the slab and heats
the material, and the remaining portion is transmitted through the
other interface at x 5 d. The electric field and thermal energy bal-
ance for the ceramic slab are given by the following equations.10

Electric field equation.—

[1a]

In this equation k
_

1 5 v/c (e1/eo)
1/2, where e1 is the permittivity of

the ceramic material,eo is the permittivity of free space, and so(T)
is the relative loss modulus of the material. The boundary condition
at the two ends of the slab are given by 

[1b]

[1c]

where k
—

5 v/c and Eo is the electric field applied at the boundary
x 5 0.

Energy balance.—

[2a]

At the boundaries of the slab, heat is lost by convection and radia
tion to the surroundings

[2b]

[2c]

where K is the thermal conductivity of the material,h is the convec-
tive heat-transfer coefficient,s is the Stefan-Boltzmann constant,
and e is the emissivity of the material.
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For materials such as Al2O3 and ZrO2, for which thermal runaway
is observed, the relative loss modulus increases exponentially with
temperature and a relation of the form so(T) 5 b1e

b2T may be used,
where b1 and b2 are constants determined experimentally.8,12

Defining dimensionless variables and parameters as

[3]

and normalizing the applied power p 5 1/2ve1E
2
o by pc 5 KTo/d

2,
the governing equations may be written as

Electric field equation.—

[3a]

with boundary conditions 

[3b]

[3c]

Energy balance.—Since we consider only the steady-state
behavior of the system,we drop the time derivative term in Eq. 2a.
The dimensionless form of the energy balance is given by

[4a]

with boundary conditions

[4b]

[4c]

Besides the applied microwave power p, other critical parameters
that determine the qualitative behavior are the ambient loss modulu
(tan do), the temperature sensitivity coefficient (n), and the dimen-
sionless slab thickness (k).

The problem consists of one complex equation for the electric field
(Eq. 3a) along with one real equation for temperature (Eq. 4a) to be
solved simultaneously for the steady state. The complex electric field
equation can be separated into two real equations, which leaves us
with three simultaneous second-order coupled boundary value prob-
lems. We use the finite difference method to discretize these equations
and solve the resulting algebraic equations numerically.

Bifur cation Analysis of the Steady-State Discretized Model and
Computation of Singular Points

The discretized steady-state model consists of N(53n) equations
for the temperature and for the real and complex electric field com-
ponents at n nodal points. We are interested in determining how the
number of solutions to this system of nonlinear algebraic equations
changes as the parameters are varied.

Consider solving N nonlinear equations in N state variables u,
dependent on a set of m parameters p

F(u, p) 5 0 ueRN, peRm [5]

Suppose that u 5 u0 is a solution for p 5 p0. Let 
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[6]

be the N 3 N Jacobian matrix. Expanding the vector function F in a
Taylor’s series around point (u0, p0) gives 

F(u, p) 5 F(u0, p0) 1 DuF(u0, p0)(u 2 u0)

1 DpF(u0, p0)(p 2 p0) 1 h.o.t [7]

(HOT stands for higher order terms.) Here DpF 5 ∂Fi/∂pj is a N 3
M matrix. Using the fact that F(u, p) 5 F(u0, p0) 5 0 at steady state
and truncating the Taylor’s series at the linear terms gives

L (u 2 u0) 1 DpF(u0, p0)(p 2 p0) 5 0 [8]

These linear equations describe how the solution varies for small
changes in the parameter vector p. If the matrix L is invertible we
can express the new solution u in terms of u0 and the parameter vec-
tor p in the neighborhood of p0 as 

u 5 u0 2 L21DpF(u0, p0)(p 2 p0) [9]

This operation results in a unique solution for u, close to uo, as the
parameters,p, are varied. For the case when L is singular (or nonin-
vertible) with a simple zero eigenvalue, it can be shown that either a
new solution branch emerges from u0 or two solution branches
merge.13,14 These points are termed bifurcation or limit points. The
parameter values at which bifurcation or limit points occur satisfy the
following set of equations

F(u, p) 5 0 [10a]

Ly0 5 0 [10b]

ky0, y0l 5 1 [10c]

(ky0, y0l implies the dot or inner product.) Equation 10c is a condi-
tion for nontriviality of the eigenvector y0. The above set of 2N 1 1
equations can be solved simultaneously for any one parameter
(keeping other parameters fixed) at a point of bifurcation (or a limit
point) and the vectors u and y0. Equivalently, we can plot a locus in
a two-parameter space (which is known as the limit point locus or
bifurcation set). When the parameters cross this set,the number of
solutions of Eq. 5 changes. For the problem studied here the bifur-
cation set consists of two branches,i.e., the ignition and extinction
locus. The bifurcation set separates the parameter space into two
regions corresponding to either one or three solutions.

Computation of the singular points.—We now illustrate the tech-
nique used to compute the limit points of the steady-state discretized
model. The discretized model is given by Eq. 10a-c. These form a set
of 2N 1 1 equations,which determines the 2N unknowns (u, y0) and
one additional parameter in p. The straightforward approach is to
compute the function F and determine its Jacobian matrix, L ,
numerically. Then the eigenvector y0 is evaluated and used in the
defining conditions for the limit point. In order to reduce computing
time and storage requirements we do not compute the Jacobian
matrix explicitly but compute the product of L and y0 by using the
definition

[11]

Continuation of the singular points.—A pseudo-arc length con-
tinuation technique15 is used to compute the limit point locus in a
two-parameter space. If Xw is a solution vector and pi (i 5 1,2) are the
two parameters, the set of equations given is augmented by the sin-
gle equation 

[12]s p p
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where s is the step size and the subscript 0 denotes values at the pre-
vious step.

The continuation step size, s, may be adjusted depending on the
sensitivity of parametric region. Beginning with an initial choice for
s, a multiplicative factor determines the step size for the next step
depending on the number of iteration steps in the actual continuation
step. In this work, the step-size control was adjusted such that the
optimum number of iterations remain between two and five at every
continuation step.

Solution of the set of nonlinear algebraic equations.—The set of
algebraic equations, which is the result of discretization, may be
written as 

[13]

[14]

The standard Newton-Raphson method was applied to solve this set
of nonlinear algebraic equations. The final vector equation G(X) 5
0 consists of 2N 1 2 simultaneous scalar equations. At every New-
ton-Raphson iteration the Jacobian matrix J and the inverse matrix
are numerically computed. The scheme converged for reasonably
good initial guesses for the solution vector X.

Results

We first illustrate results for a slab being heated in a microwave
field with a gradual increase in the applied power starting at ambient
temperature (T 5 To). As the power is increased slowly, the temper-
ature of the ceramic also increases slowly, but at a critical value of
the power there is a sudden jump in the temperature to a very high
value, to the so-called ignited state. The temperature on this ignited
branch could be in the range where the ceramic can melt down. Fur-
ther increase in the applied power leads to a gradual increase in tem-
perature. Similarly, if initiall y the state of the ceramic is on the high-
temperature branch and the applied power is gradually decreased,
the temperature of the ceramic decreases gradually until a certain
critical value at which a sudden and sharp decrease occurs. When the
microwave power is below this extinction limit, the ceramic is in the
low-temperature (quenched) branch. Thus, the steady-state curve
describing the center-line temperature exhibits hysteresis with two
stable states (and one unstable state) when the applied power is
between the ignition and extinction limits.

Figure 1 illustrates the above-described typical S-shaped steady-
state behavior for a ceramic slab under microwave heating for d 5
4.0 cm and other parameter values given in Table I. Such steady-state
behavior has been reported by numerous authors.8,10,11 Points
marked (1) and (2) are the ignition and extinction point,respective-
ly. They are characterized by the linearized steady-state system hav-
ing a zero eigenvalue. Physical reasoning or stability analysis may
be used to show that the middle steady-state branch between points
(1) and (2) is unstable. Note that the power given in Fig. 1 is the
applied power (P 5 1/2 WE1Eo

2) not the power dissipated in the
ceramic (see also Fig. 13).

In Fig. 2 and 3 the square of the magnitude of the electric field and
the temperature profiles are shown at the three different locations on
the S-shaped curve noted in Fig. 1. It is observed that the electric field
experiences spatially undamped oscillations at low temperatures
which decay exponentially as the temperature is increased. Finally, at
high enough temperatures,the electric field shows a simple exponen-
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tial decay with a maximum at the surface. The temperature profile
inside the ceramic (Fig. 3) is symmetric and displays a maximum
near the center at low temperatures. However, the temperature profile
becomes asymmetric and the maximum shifts toward the surface with
increasing temperature. The maximum temperature never reaches the
surface (x 5 0) due to heat losses from the surface. These transitions
in temperature and electric field profiles occur due to the exponential
increase in the loss moduli (tan doe

nu) with temperature.
Figure 4 illustrates how the ignition and extinction points move

in the parameter space of microwave power and slab thickness (a
bifurcation set). It is observed that the microwave power at which
ignition and extinction occur oscillates with the slab thickness. Such
peculiar behavior has not been reported for a physical system and
can be attributed to the oscillations of the electric field inside the
ceramic. It is also seen that the oscillations in the limit point (igni-
tion and extinction) locus show an exponential decay with slab
thickness,which can be attributed to the exponential decay of the
electric field with thickness. An interesting observation from this
bifurcation set is that as one goes toward larger slab thickness the
oscillating ignition and extinction points merge (at a so-called hys-
teresis point) leading to formation of segregated loops (not shown in
Fig. 4). The physical interpretation of this result is that there are
“windows” in thickness where the bifurcation diagram of the center
temperature vs.power is a single valued curve (with no ignition and
extinction points), and no runaway occurs for any value of
microwave power. For the parameter values we have chosen,this
behavior seems to occur for thicknesses more than 12 cm. Later on
we show that this behavior can occur for smaller slab thicknesses if
we increase the microwave frequency or ceramic permittivity. Fig-
ure 5 gives a few representative bifurcation diagrams with

Figure 1. Simple S-shaped steady-state bifurcation diagram for ceramic slab
(d 5 4.0 cm). Other parameter values as in Table I.

Table I. Base case parameter values used in calculations.

Ambient temperature To (K) 300
Heat-transfer coefficient h (W/m2 K) 170
Thermal conductivity K (W/m K) 10
Relative permittivity e1/eo 10
Emissivity e 0.7
Frequency f (GHz) 2.45
Loss moduli (at To) tan do 0.0012
Temperature exponent of loss moduli n 1.0
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microwave power being the operating (bifurcation) parameter. It is
clearly seen in Fig. 4 that the range of power values for which we
have multiplicity (dif ference between ignition and extinction points)
grows and shrinks (i.e., oscillates) as we change the thickness,but
the oscillation amplitude shows an exponential decay with increas-
ing thickness. Further interpretation of the behavior in Fig. 4 and 5
is shown in the bifurcation diagrams of Fig. 6 and 7 where we have
taken the slab thickness as the operating parameter keeping the
microwave power constant. These figures show that there is a range
of thickness for which there exist steady-state multiplicities (more
than one temperature for the same thickness) interspersed within a
range of thickness for which a single steady state exists for a given
microwave power. For ceramic sintering one may desire to operate
at an intermediate temperature, not on the ignited branch, to avoid

Figure 2. Electric field profiles inside the slab at the three different locations
noted in Fig. 1.

Figure 3. Temperature profiles inside the slab at three different locations
noted in Fig 1.
runaway. In such a case one may want to operate in a regime where
there is no multiplicity f or a given power so that one is not trapped
in the lower (extinguished) temperature branch or does not jump to
the very high temperature ignited branch.

Figure 8 gives another bifurcation set in the parameter space of
ambient loss modulus (tan do) and microwave power. This plot was
made for a slab thickness of 1 cm. It is observed that the two limit
points merge (at a hysteresis point) as tan do increases. This implies
that if we go in the direction perpendicular to the plane in Fig. 4 (in
the parameter space of tan do), the oscillating loops seen in Fig. 4
shrink and finally disappear with increasing tan do, putting an end to
runaway behavior. Thus, materials having higher loss moduli at

Figure 4. Bifurcation set in the parameter space of applied power and slab
thickness. The two different curves correspond to the ignition and extinction
locus. Other parameter values as in Table I.

Figure 5. Steady-state bifurcation diagrams demonstrating the growing and
shrinking of multiplicity in Fig 4.
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d

ambient conditions have lesser chances of “running away” upon
microwave heating. Another interpretation of this result would be to
operate at elevated temperatures, increasing the loss modulus an
averting runaway.

We now discuss how other relevant parameters affect the bifur-
cation behavior. An important parameter is the microwave frequen-
cy, which may range from 2.45 to 24.5 GHz under normal sintering
conditions. The most commonly used frequency, though, is
2.45GHz at which all the previous analysis was done. If one dou-

Figure 6. Steady-state bifurcation diagram using thickness as the bifurcation
parameter demonstrating multiplicity and isolated solution branches (p 5 5
kW/cm3, other parameter values as in Table I).

Figure 7. Steady-state bifurcation diagram using thickness as the bifurcation
parameter demonstrating formation of new isolated solution branches (p 5
2.5 kW/cm3, other parameter values as in Table I).
bles the microwave frequency (f 5 4.9 GHz) one sees a qualitative-
ly similar bifurcation set (compare Fig. 9 to Fig. 4). Note that by
doubling both the thickness and the microwave power in Fig. 9 one
retraces Fig. 4 with minor changes. Thus,doubling the frequency
rescales the problem. Also, it should be mentioned that by operating
at higher frequency we can achieve the advantage of operating at
larger thickness,thus availing the “windows” in thickness for which
there is no runaway even for small slab thickness. Increase in per-
mittivity has qualitatively the same effect as increase in frequency.
Figure 10 gives a bifurcation set for a relative permittivity (e1/eo) of
60,keeping all other parameters as shown in Table I. It is evident that
there are windows starting near thicknesses of 2.4,3.2, 4.0, 4.8,

Figure 8. Bifurcation set in (tan do, p) space showing the merger of ignition
and extinction points at higher values of tan do (d 5 1.0 cm,other parameter
values as in Table I).

Figure 9. Bifurcation set in (d, p) space for f 5 4.9 GHz. Doubling the fre-
quency just rescales Fig. 4. Other parameter values as in Table I.
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.....cm, and these windows give more flexibility to operate while
avoiding runaway. One such window is demonstrated in Fig. 11
which shows bifurcation diagrams where we have no multiplicity f or
a specific thickness (d 5 3.9 cm) bracketed on either side by a mul-
tiple solution regime. A case without multiplicity is ideal in the sense
that the desired temperature of the ceramic can be set uniquely by a
microwave power setting.

It should be noted that the system can be sensitive even when the
bifurcation diagram is single valued. For example, we see from Fig. 11
that when d 5 3.9 cm there is a unique center temperature for any
applied power. However, when p is close to 0.2 3 104 W/cm3, the cen-
ter temperature is sensitive to changes in p. Thus,while sudden jumps

Figure 10. Bifurcation set in (d, p) space for e1/eo 5 60. Increasing permit-
tivity moves “windows” of uniqueness toward smaller slab thickness. Other
parameter values as in Table I.

Figure 11. Steady-state bifurcation diagrams showing uniqueness (for d 5
3.9 cm) of solution corresponding to “window” in Fig. 10.
are not present in the unique solution region, the system can still exhib-
it “parametric sensitivity,” where small changes in one of the operating
variables (e.g., power) result in large variation in the temperature.

The complementary effect of permittivity and frequency can be
explained by the wavenumber k

_
1(5 2pf/c(e1/eo)

1/2). The inverse of
this wavenumber defines the length scale of the electric field oscil-
lations. The oscillations appearing in the bifurcation set have wave-
length C/k

_
1, where C is a constant. Thus,a relative change in oper-

ating frequency Df/f has a similar effect as a relative change in per-
mittivity De1/e1 5 (Df/f )2.

Further insight into the features presented may be provided by
analyzing the same model with a constant loss modulus (n 5 0). This
would decouple the electric field equations, which are now linear
and can be solved explicitly. Substitution of u(j) in the energy bal-
ance Eq. 4a and integration gives a unique temperature profile. Thus,
there will always be a unique solution when n 5 0. For this case we
plot the center temperature (Fig. 12) and power deposition (Fig. 13)
variation with thickness. It can be seen that both oscillate with thick-
ness. Also, the length scale of these oscillations (wavelength) is the
same as the one in the bifurcation set,further corroborating the phe-
nomenon described previously.

Finally, we note that for any small but nonzero value of n, the
boundary value problem defined by Eq. 3a-c and 4a-c has multiple
solutions (for some range of other parameters). As n is varied, the
qualitative features remain the same but move to a different range in
the parameter space. For example, the temperature of the ignition
point may be approximated by ui < 1/n. Thus,the temperature sen-
sitivity parameter (n) determines the ignition and extinction temper-
atures and hence strongly influences the runaway behavior.

Summary
In this work we have analyzed and classified the thermal behavior

of a ceramic slab under microwave heating. Thermal runaway can
occur due to a feedback mechanism whereby the ability of the mate-
rial to absorb microwave energy (the loss modulus) increases as the
temperature increases. Such thermal runaway can lead to complete
meltdown of the material. Bifurcation theory was used to determine
the region of thermal runaway and how it is influenced by important
variables and parameters such as the microwave power, ceramic per-
mittivity, relative loss modulus,microwave frequency, and slab thick-

Figure 12. The “unique” temperature (n 5 0) inside the ceramic oscillates as
slab thickness is changed for a given microwave power (p 5 10 kW/cm3,
other parameter values as in Table I).
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ness. It was found that for a certain set of parameter values which are
within the range of practical systems,there are periodically recurring
ranges of slab thickness for which thermal runaway may be avoided.
Also, one can select operating parameters so as to suppress multiple
solutions for the microwave-heated ceramic material. In such cases,
the temperature of the ceramic is a unique function of the power
absorbed by the ceramic, and thermal runaway does not occur as that
power is increased. The one-dimensional model analyzed here pro-
vides much better insight into the behavior of the slab under
microwave heating as compared to the lumped model used previous-
ly by several authors. The lumped model is an approximation to the
actual process only in the limiting case of very small (and perhaps
unrealistic) values of slab thickness. Finally, it should be pointed out
that the analysis and techniques presented here may be used to ana-
lyze more complicated models (e.g., two- and three-dimensional
models) and the behavior of nonisotropic materials.

Figure 13. The “unique” power deposition (n 5 0) inside the ceramic oscil-
lates as slab thickness is changed for a given microwave power (p 5
10 kW/cm3, other parameter values as in Table I).
List of Symbols
Bi Biot number
c velocity of light,m/s
Cp specific heat capacity of the ceramic
d slab thickness,m
e emissivity
Eo applied electric field, V/m
h ambient heat-transfer coefficient,W/(m2 K)
k
_

wavenumber of the incident microwave, m21

k
_

1 wavenumber inside the ceramic, m21

K thermal conductivity, W/(m K)
p applied microwave power, W/m3

T temperature, K
U electric field in the ceramic, V/m

Greek
eo permittivity of free space, F/m
e1 permittivity of the ceramic, F/m
u dimensionless temperature
n temperature sensitivity of loss moduli
j dimensionless depth inside the ceramic
r density of the ceramic, kg/m3

s Stefan-Boltzmann constant,W/(m2 K4)
so relative loss modulus of the ceramic
v (5 2pf ) wave frequency, s21
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